相关疑难解决方法(0)

为什么32位寄存器上的x86-64指令归零整个64位寄存器的上半部分?

x86-64 Tour of Intel Manuals中,我读到了

也许最令人惊讶的事实是,诸如MOV EAX, EBX自动将指令的高32位归零的指令RAX.

同一来源引用的英特尔文档(3.4.1.1 64位手动基本架构中的通用寄存器)告诉我们:

  • 64位操作数在目标通用寄存器中生成64位结果.
  • 32位操作数生成32位结果,在目标通用寄存器中零扩展为64位结果.
  • 8位和16位操作数生成8位或16位结果.目标通用寄存器的高56位或48位(分别)不会被操作修改.如果8位或16位操作的结果用于64位地址计算,则将寄存器显式符号扩展为完整的64位.

在x86-32和x86-64汇编中,16位指令如

mov ax, bx
Run Code Online (Sandbox Code Playgroud)

不要表现出这种"奇怪"的行为,即eax的上层词被归零.

因此:引入这种行为的原因是什么?乍一看似乎不合逻辑(但原因可能是我习惯了x86-32汇编的怪癖).

x86 assembly x86-64 cpu-registers zero-extension

97
推荐指数
3
解决办法
2万
查看次数

如果没有Skylake上的VZEROUPPER,为什么这个SSE代码会慢6倍?

我一直试图找出应用程序中的性能问题,并最终将其缩小到一个非常奇怪的问题.如果VZEROUPPER指令被注释掉,则下面的代码在Skylake CPU(i5-6500)上运行速度慢6倍.我测试了Sandy Bridge和Ivy Bridge CPU,两种版本都以相同的速度运行,有或没有VZEROUPPER.

现在我VZEROUPPER对这个代码有了一个相当好的想法,而且我认为当没有VEX编码指令并且没有调用可能包含它们的任何函数时,它对这个代码根本不重要.事实上它不支持其他支持AVX的CPU似乎支持这一点.英特尔®64和IA-32架构优化参考手册中的表11-2也是如此

那么发生了什么?

我留下的唯一理论是,CPU中存在一个错误,它错误地触发了"保存AVX寄存器的上半部分"程序,而不应该这样做.或者其他一些同样奇怪的东西.

这是main.cpp:

#include <immintrin.h>

int slow_function( double i_a, double i_b, double i_c );

int main()
{
    /* DAZ and FTZ, does not change anything here. */
    _mm_setcsr( _mm_getcsr() | 0x8040 );

    /* This instruction fixes performance. */
    __asm__ __volatile__ ( "vzeroupper" : : : );

    int r = 0;
    for( unsigned j = 0; j < 100000000; ++j )
    {
        r |= slow_function( 
                0.84445079384884236262,
                -6.1000481519580951328, …
Run Code Online (Sandbox Code Playgroud)

performance x86 sse intel avx

32
推荐指数
2
解决办法
4072
查看次数

标签 统计

x86 ×2

assembly ×1

avx ×1

cpu-registers ×1

intel ×1

performance ×1

sse ×1

x86-64 ×1

zero-extension ×1