我有以下格式的数据(RDD或Spark DataFrame):
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
rdd = sc.parallelize([('X01',41,'US',3),
('X01',41,'UK',1),
('X01',41,'CA',2),
('X02',72,'US',4),
('X02',72,'UK',6),
('X02',72,'CA',7),
('X02',72,'XX',8)])
# convert to a Spark DataFrame
schema = StructType([StructField('ID', StringType(), True),
StructField('Age', IntegerType(), True),
StructField('Country', StringType(), True),
StructField('Score', IntegerType(), True)])
df = sqlContext.createDataFrame(rdd, schema)
Run Code Online (Sandbox Code Playgroud)
我想做的是'重塑'数据,将Country(特别是美国,英国和CA)中的某些行转换为列:
ID Age US UK CA
'X01' 41 3 1 2
'X02' 72 4 6 7
Run Code Online (Sandbox Code Playgroud)
从本质上讲,我需要Python的pivot工作流程:
categories = ['US', 'UK', 'CA']
new_df = df[df['Country'].isin(categories)].pivot(index = 'ID',
columns = 'Country',
values = 'Score')
Run Code Online (Sandbox Code Playgroud)
我的数据集相当大,所以我不能真正地collect()将数据摄取到内存中来进行Python本身的重塑.有没有办法 …