我正在尝试运行像https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/sql/streaming/StructuredKafkaWordCount.scala这样的示例.我从http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html上的Spark Structured Streaming Programming指南开始.
我的代码是
package io.boontadata.spark.job1
import org.apache.spark.sql.SparkSession
object DirectKafkaAggregateEvents {
val FIELD_MESSAGE_ID = 0
val FIELD_DEVICE_ID = 1
val FIELD_TIMESTAMP = 2
val FIELD_CATEGORY = 3
val FIELD_MEASURE1 = 4
val FIELD_MEASURE2 = 5
def main(args: Array[String]) {
if (args.length < 3) {
System.err.println(s"""
|Usage: DirectKafkaAggregateEvents <brokers> <subscribeType> <topics>
| <brokers> is a list of one or more Kafka brokers
| <subscribeType> sample value: subscribe
| <topics> is a list of one or more …
Run Code Online (Sandbox Code Playgroud) scala sbt sbt-assembly apache-spark spark-structured-streaming
我正在尝试使用 sbt 1.0.4 和 sbt- assembly 0.14.6 来组装 Spark 应用程序。
Spark 应用程序在 IntelliJ IDEA 或 中启动时工作正常spark-submit
,但如果我使用命令行(Windows 10 中的 cmd)运行组装的 uber-jar:
java -Xmx1024m -jar my-app.jar
Run Code Online (Sandbox Code Playgroud)
我得到以下异常:
线程“main”中出现异常 java.lang.ClassNotFoundException:找不到数据源:jdbc。请在http://spark.apache.org/third-party-projects.html找到软件包
Spark 应用程序如下所示。
package spark.main
import java.util.Properties
import org.apache.spark.sql.SparkSession
object Main {
def main(args: Array[String]) {
val connectionProperties = new Properties()
connectionProperties.put("user","postgres")
connectionProperties.put("password","postgres")
connectionProperties.put("driver", "org.postgresql.Driver")
val testTable = "test_tbl"
val spark = SparkSession.builder()
.appName("Postgres Test")
.master("local[*]")
.config("spark.hadoop.fs.file.impl", classOf[org.apache.hadoop.fs.LocalFileSystem].getName)
.config("spark.sql.warehouse.dir", System.getProperty("java.io.tmpdir") + "swd")
.getOrCreate()
val dfPg = spark.sqlContext.read.
jdbc("jdbc:postgresql://localhost/testdb",testTable,connectionProperties)
dfPg.show()
} …
Run Code Online (Sandbox Code Playgroud) 我正在尝试使用CSV设置Kafka流,以便可以将其流式传输到Spark。但是,我不断
Exception in thread "main" java.lang.ClassNotFoundException: Failed to find data source: kafka. Please find packages at http://spark.apache.org/third-party-projects.html
Run Code Online (Sandbox Code Playgroud)
我的代码看起来像这样
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.execution.streaming.FileStreamSource.Timestamp
import org.apache.spark.sql.types._
object SpeedTester {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder.master("local[4]").appName("SpeedTester").config("spark.driver.memory", "8g").getOrCreate()
val rootLogger = Logger.getRootLogger()
rootLogger.setLevel(Level.ERROR)
import spark.implicits._
val mySchema = StructType(Array(
StructField("incident_id", IntegerType),
StructField("date", StringType),
StructField("state", StringType),
StructField("city_or_county", StringType),
StructField("n_killed", IntegerType),
StructField("n_injured", IntegerType)
))
val streamingDataFrame = spark.readStream.schema(mySchema).csv("C:/Users/zoldham/IdeaProjects/flinkpoc/Data/test")
streamingDataFrame.selectExpr("CAST(incident_id AS STRING) AS key",
"to_json(struct(*)) AS value").writeStream
.format("kafka") …
Run Code Online (Sandbox Code Playgroud)