相关疑难解决方法(0)

用于测试Collat​​z猜想的C++代码比手写程序集更快 - 为什么?

我为Project Euler Q14编写了这两个解决方案,在汇编和C++中.它们是用于测试Collat​​z猜想的相同蛮力方法.装配解决方案与组装

nasm -felf64 p14.asm && gcc p14.o -o p14
Run Code Online (Sandbox Code Playgroud)

C++是用.编译的

g++ p14.cpp -o p14
Run Code Online (Sandbox Code Playgroud)

部件, p14.asm

section .data
    fmt db "%d", 10, 0

global main
extern printf

section .text

main:
    mov rcx, 1000000
    xor rdi, rdi        ; max i
    xor rsi, rsi        ; i

l1:
    dec rcx
    xor r10, r10        ; count
    mov rax, rcx

l2:
    test rax, 1
    jpe even

    mov rbx, 3
    mul rbx
    inc rax
    jmp c1

even:
    mov rbx, 2 …
Run Code Online (Sandbox Code Playgroud)

c++ optimization performance x86 assembly

803
推荐指数
8
解决办法
14万
查看次数

为什么循环指令慢?英特尔无法有效实施吗?

LOOP(英特尔参考手动输入)递减ecx/rcx,然后如果非零则跳转.这很慢,但是英特尔不能廉价地把它变得很快吗? dec/jnz已经将宏观融合成 Sandybridge家族的一个 uop; 唯一的区别是设置标志.

loop关于各种微体系结构,来自Agner Fog的说明表:

  • K8/K10:7 m-ops
  • Bulldozer-family/Ryzen:1 m-op(与宏观融合测试和分支相同,或者jecxz)

  • P4:4次(相同jecxz)

  • P6(PII/PIII):8次
  • Pentium M,Core2:11 uops
  • Nehalem:6个uops.(11为loope/ loopne).吞吐量= 4c(loop)或7c(loope/ne).
  • SnB家族:7个uops.(11为loope/ loopne). 吞吐量=每5个循环一个,这是将循环计数器保留在内存中的瓶颈!jecxz只有2 uops,吞吐量与普通吞吐量相同jcc
  • Silvermont:7次
  • AMD Jaguar(低功耗):8 uops,5c吞吐量
  • 通过Nano3000:2 uops

难道解码器不能像lea rcx, [rcx-1]/ 那样解码jrcxz吗?这将是3 uops.至少那是没有地址大小前缀的情况,否则它必须使用ecx和截断RIP,EIP如果跳转; 也许奇怪的地址大小选择控制减量的宽度解释了许多uops?

或者更好,只需将其解码为不设置标志的融合分支和分支? dec ecx …

performance x86 assembly intel cpu-architecture

53
推荐指数
3
解决办法
6096
查看次数

为什么我不能在我的C代码中使用//样式的注释?

我正在使用gcc(Ubuntu 4.4.1-4ubuntu9)来编译我正在编写的程序,但只要它在我的代码中看到//注释就会呕吐,说:

interface.c :##: error: expected expression before â/â token<
Run Code Online (Sandbox Code Playgroud)

gcc我使用的编译模式是否禁止//评论?

$ gcc -g -ansi -pedantic interface.c structs.h -c -I. -I/home/me/project/h
Run Code Online (Sandbox Code Playgroud)

为什么?

c

33
推荐指数
2
解决办法
3万
查看次数

什么是近,远和巨大的指针?

任何人都可以用适当的例子向我解释这些指针......当这些指针被使用时?

c c++ x86 pointers x86-16

29
推荐指数
3
解决办法
2万
查看次数

在C++内联asm中使用基指针寄存器

我希望能够%rbp在内联asm中使用基指针寄存器().这样的玩具示例是这样的:

void Foo(int &x)
{
    asm volatile ("pushq %%rbp;"         // 'prologue'
                  "movq %%rsp, %%rbp;"   // 'prologue'
                  "subq $12, %%rsp;"     // make room

                  "movl $5, -12(%%rbp);" // some asm instruction

                  "movq %%rbp, %%rsp;"  // 'epilogue'
                  "popq %%rbp;"         // 'epilogue'
                  : : : );
    x = 5;
}

int main() 
{
    int x;
    Foo(x);
    return 0;
}
Run Code Online (Sandbox Code Playgroud)

我希望,因为我使用通常的序幕/结尾函数调用方法来推送和弹出旧的%rbp,这样就可以了.但是,当我尝试在内x联asm之后访问时,它会出现故障.

GCC生成的汇编代码(略微剥离)是:

_Foo:
    pushq   %rbp
    movq    %rsp, %rbp
    movq    %rdi, -8(%rbp)

    # INLINEASM
    pushq %rbp;          // prologue
    movq %rsp, …
Run Code Online (Sandbox Code Playgroud)

c++ x86 assembly red-zone

13
推荐指数
1
解决办法
4119
查看次数

为什么GCC不使用部分寄存器?

write(1,"hi",3)在linux上反汇编,gcc -s -nostdlib -nostartfiles -O3结果如下:

ba03000000     mov edx, 3 ; thanks for the correction jester!
bf01000000     mov edi, 1
31c0           xor eax, eax
e9d8ffffff     jmp loc.imp.write
Run Code Online (Sandbox Code Playgroud)

我不是到编译器的开发,但由于移动到这些寄存器的每一个值是恒定的和已知的编译时间,我很好奇,为什么不GCC使用dl,dilal来代替.也许有人会说,此功能不会让任何性能上的差异,但有一个在之间的可执行文件的大小有很大的区别mov $1, %rax => b801000000,并mov $1, %al => b001当我们谈论数千寄存器的程序访问.如果软件的优雅部分不仅体积小,它确实会对性能产生影响.

有人可以解释为什么"海湾合作委员会决定"它无所谓?

x86 assembly gcc x86-64

13
推荐指数
2
解决办法
1655
查看次数

迭代for循环中的所有无符号整数

假设我想在循环中迭代所有整数for.为了便于讨论,假设我f(unsigned x)为每个整数调用一些未知函数:

for (unsigned i = 0; i < UINT_MAX; i++) {
     f(i);
}
Run Code Online (Sandbox Code Playgroud)

当然,上面的代码无法遍历所有整数,因为它错过了一个:UINT_MAX.将条件更改为i <= UINT_MAX仅导致无限循环,因为这是一个重言式.

你可以用do-while循环来完成它,但是你会失去for语法的所有细节.

我可以吃蛋糕(for循环)并吃掉它(迭代所有整数)吗?

c syntax loops for-loop

10
推荐指数
2
解决办法
715
查看次数

使用GNU C内联汇编在VGA内存中绘制字符

我正在学习用DOS和内联汇编在DOS下做一些低级VGA编程.现在我正在尝试创建一个在屏幕上打印出一个角色的功能.

这是我的代码:

//This is the characters BITMAPS
uint8_t characters[464] = {
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x20,0x20,0x00,0x20,0x00,0x50,
  0x50,0x00,0x00,0x00,0x00,0x00,0x50,0xf8,0x50,0x50,0xf8,0x50,0x00,0x20,0xf8,0xa0,
  0xf8,0x28,0xf8,0x00,0xc8,0xd0,0x20,0x20,0x58,0x98,0x00,0x40,0xa0,0x40,0xa8,0x90,
  0x68,0x00,0x20,0x40,0x00,0x00,0x00,0x00,0x00,0x20,0x40,0x40,0x40,0x40,0x20,0x00,
  0x20,0x10,0x10,0x10,0x10,0x20,0x00,0x50,0x20,0xf8,0x20,0x50,0x00,0x00,0x20,0x20,
  0xf8,0x20,0x20,0x00,0x00,0x00,0x00,0x00,0x60,0x20,0x40,0x00,0x00,0x00,0xf8,0x00,
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x60,0x60,0x00,0x00,0x08,0x10,0x20,0x40,0x80,
  0x00,0x70,0x88,0x98,0xa8,0xc8,0x70,0x00,0x20,0x60,0x20,0x20,0x20,0x70,0x00,0x70,
  0x88,0x08,0x70,0x80,0xf8,0x00,0xf8,0x10,0x30,0x08,0x88,0x70,0x00,0x20,0x40,0x90,
  0x90,0xf8,0x10,0x00,0xf8,0x80,0xf0,0x08,0x88,0x70,0x00,0x70,0x80,0xf0,0x88,0x88,
  0x70,0x00,0xf8,0x08,0x10,0x20,0x20,0x20,0x00,0x70,0x88,0x70,0x88,0x88,0x70,0x00,
  0x70,0x88,0x88,0x78,0x08,0x70,0x00,0x30,0x30,0x00,0x00,0x30,0x30,0x00,0x30,0x30,
  0x00,0x30,0x10,0x20,0x00,0x00,0x10,0x20,0x40,0x20,0x10,0x00,0x00,0xf8,0x00,0xf8,
  0x00,0x00,0x00,0x00,0x20,0x10,0x08,0x10,0x20,0x00,0x70,0x88,0x10,0x20,0x00,0x20,
  0x00,0x70,0x90,0xa8,0xb8,0x80,0x70,0x00,0x70,0x88,0x88,0xf8,0x88,0x88,0x00,0xf0,
  0x88,0xf0,0x88,0x88,0xf0,0x00,0x70,0x88,0x80,0x80,0x88,0x70,0x00,0xe0,0x90,0x88,
  0x88,0x90,0xe0,0x00,0xf8,0x80,0xf0,0x80,0x80,0xf8,0x00,0xf8,0x80,0xf0,0x80,0x80,
  0x80,0x00,0x70,0x88,0x80,0x98,0x88,0x70,0x00,0x88,0x88,0xf8,0x88,0x88,0x88,0x00,
  0x70,0x20,0x20,0x20,0x20,0x70,0x00,0x10,0x10,0x10,0x10,0x90,0x60,0x00,0x90,0xa0,
  0xc0,0xa0,0x90,0x88,0x00,0x80,0x80,0x80,0x80,0x80,0xf8,0x00,0x88,0xd8,0xa8,0x88,
  0x88,0x88,0x00,0x88,0xc8,0xa8,0x98,0x88,0x88,0x00,0x70,0x88,0x88,0x88,0x88,0x70,
  0x00,0xf0,0x88,0x88,0xf0,0x80,0x80,0x00,0x70,0x88,0x88,0xa8,0x98,0x70,0x00,0xf0,
  0x88,0x88,0xf0,0x90,0x88,0x00,0x70,0x80,0x70,0x08,0x88,0x70,0x00,0xf8,0x20,0x20,
  0x20,0x20,0x20,0x00,0x88,0x88,0x88,0x88,0x88,0x70,0x00,0x88,0x88,0x88,0x88,0x50,
  0x20,0x00,0x88,0x88,0x88,0xa8,0xa8,0x50,0x00,0x88,0x50,0x20,0x20,0x50,0x88,0x00,
  0x88,0x50,0x20,0x20,0x20,0x20,0x00,0xf8,0x10,0x20,0x40,0x80,0xf8,0x00,0x60,0x40,
  0x40,0x40,0x40,0x60,0x00,0x00,0x80,0x40,0x20,0x10,0x08,0x00,0x30,0x10,0x10,0x10,
  0x10,0x30,0x00,0x20,0x50,0x88,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xf8,
  0x00,0xf8,0xf8,0xf8,0xf8,0xf8,0xf8};
/**************************************************************************
 *  put_char                                                              *
 *     Print char                                                         *
 **************************************************************************/
void put_char(int x ,int y,int ascii_char ,byte color){

    __asm__(
        "push %si\n\t"
        "push %di\n\t"
        "push %cx\n\t"
        "mov color,%dl\n\t"   //test color
        "mov ascii_char,%al\n\t"  //test char
        "sub $32,%al\n\t"
        "mov $7,%ah\n\t"
        "mul %ah\n\t"
        "lea $characters,%si\n\t" …
Run Code Online (Sandbox Code Playgroud)

c x86 gcc dos djgpp

8
推荐指数
1
解决办法
1660
查看次数

为什么在AMD64上对mmap内存的未对齐访问有时会出现段错误?

我有这段代码在AMD64兼容CPU上运行Ubuntu 14.04时会出现段错误:

#include <inttypes.h>
#include <stdlib.h>

#include <sys/mman.h>

int main()
{
  uint32_t sum = 0;
  uint8_t *buffer = mmap(NULL, 1<<18, PROT_READ,
                         MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  uint16_t *p = (buffer + 1);
  int i;

  for (i=0;i<14;++i) {
    //printf("%d\n", i);
    sum += p[i];
  }

  return sum;
}
Run Code Online (Sandbox Code Playgroud)

如果使用分配内存,则仅此段错误mmap.如果我使用malloc,堆栈上的缓冲区,或全局变量,它不会段错误.

如果我将循环的迭代次数减少到少于14的次数,则不再是段错误.如果我从循环内打印数组索引,它也不再是段错误.

为什么未对齐的内存访问能够访问未对齐地址的CPU上的段错误,为什么只有在这种特定情况下呢?

c gcc mmap x86-64 auto-vectorization

5
推荐指数
1
解决办法
1608
查看次数