分类问题,例如逻辑回归或多项逻辑回归,优化了交叉熵损失.通常,交叉熵层遵循softmax层,其产生概率分布.
在tensorflow中,至少有十几种不同的交叉熵损失函数:
tf.losses.softmax_cross_entropytf.losses.sparse_softmax_cross_entropytf.losses.sigmoid_cross_entropytf.contrib.losses.softmax_cross_entropytf.contrib.losses.sigmoid_cross_entropytf.nn.softmax_cross_entropy_with_logitstf.nn.sigmoid_cross_entropy_with_logits哪个只适用于二进制分类,哪个适用于多类问题?你何时应该使用sigmoid而不是softmax?如何在sparse功能与别人不同,为什么仅是它softmax?
相关(更多数学导向)讨论:交叉熵丛林.
machine-learning neural-network logistic-regression tensorflow cross-entropy
我使用tf.estimator .method export_savedmodel保存模型,如下所示:
export_dir="exportModel/"
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
classifier.export_savedmodel(export_dir, input_receiver_fn, as_text=False, checkpoint_path="Model/model.ckpt-400")
Run Code Online (Sandbox Code Playgroud)
如何导入此保存的模型并用于预测?
我试图将Tensorflow的官方基本word2vec实现转换为使用tf.Estimator.问题是当使用Tensorflow Estimators时,损失函数(sampled_softmax_loss或nce_loss)会出错.它在原始实现中完美地运行.
这是Tensorflow的官方基本word2vec实现:
以下是我实施此代码的Google Colab笔记本,该代码正常运行.
https://colab.research.google.com/drive/1nTX77dRBHmXx6PEF5pmYpkIVxj_TqT5I
这是Google Colab笔记本,我在其中更改了代码,因此它使用Tensorflow Estimator,它不起作用.
https://colab.research.google.com/drive/1IVDqGwMx6BK5-Bgrw190jqHU6tt3ZR3e
为方便起见,这里是我定义的Estimator版本的精确代码 model_fn
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
num_sampled = 64 # Number of negative examples to sample.
def my_model( features, labels, mode, params):
with tf.name_scope('inputs'):
train_inputs = features
train_labels = labels …Run Code Online (Sandbox Code Playgroud)