我通常得到这样的PCA负载:
pca = PCA(n_components=2)
X_t = pca.fit(X).transform(X)
loadings = pca.components_
Run Code Online (Sandbox Code Playgroud)
如果我PCA使用scikit-learnpipline 运行...
from sklearn.pipeline import Pipeline
pipeline = Pipeline(steps=[
('scaling',StandardScaler()),
('pca',PCA(n_components=2))
])
X_t=pipeline.fit_transform(X)
Run Code Online (Sandbox Code Playgroud)
......有可能获得负荷吗?
只是尝试loadings = pipeline.components_失败:
AttributeError: 'Pipeline' object has no attribute 'components_'
Run Code Online (Sandbox Code Playgroud)
谢谢!
(也有兴趣coef_从学习管道中提取属性.)
我正在使用FeatureUnion来加入从事件标题和描述中找到的功能:
union = FeatureUnion(
transformer_list=[
# Pipeline for pulling features from the event's title
('title', Pipeline([
('selector', TextSelector(key='title')),
('count', CountVectorizer(stop_words='english')),
])),
# Pipeline for standard bag-of-words model for description
('description', Pipeline([
('selector', TextSelector(key='description_snippet')),
('count', TfidfVectorizer(stop_words='english')),
])),
],
transformer_weights ={
'title': 1.0,
'description': 0.2
},
)
Run Code Online (Sandbox Code Playgroud)
但是,调用union.get_feature_names()给我一个错误:"变换器标题(类型管道)不提供get_feature_names." 我想看看我的不同矢量化器生成的一些功能.我该怎么做呢?