相关疑难解决方法(0)

在 Keras 的 tokenizer 类中使用 num_words

想了解两者之间的区别,

from tensorflow.keras.preprocessing.text import Tokenizer

sentences = [
    'i love my dog',
    'I, love my cat',
    'You love my dog!'
]

tokenizer = Tokenizer(num_words = 1)
tokenizer.fit_on_texts(sentences)
word_index = tokenizer.word_index
print(word_index)
Run Code Online (Sandbox Code Playgroud)

订单/订单 - {'love': 1, 'my': 2, 'i': 3, 'dog': 4, 'cat': 5, 'you': 6}

对比

from tensorflow.keras.preprocessing.text import Tokenizer

sentences = [
    'i love my dog',
    'I, love my cat',
    'You love my dog!'
]

tokenizer = Tokenizer(num_words = 100)
tokenizer.fit_on_texts(sentences)
word_index = tokenizer.word_index
print(word_index)
Run Code Online (Sandbox Code Playgroud)

订单/订单 - {'love': 1, …

python nlp machine-learning keras tensorflow

3
推荐指数
1
解决办法
170
查看次数

标签 统计

keras ×1

machine-learning ×1

nlp ×1

python ×1

tensorflow ×1