假设我有一个时间序列:
In[138] rng = pd.date_range('1/10/2011', periods=10, freq='D')
In[139] ts = pd.Series(randn(len(rng)), index=rng)
In[140]
Out[140]:
2011-01-10 0
2011-01-11 1
2011-01-12 2
2011-01-13 3
2011-01-14 4
2011-01-15 5
2011-01-16 6
2011-01-17 7
2011-01-18 8
2011-01-19 9
Freq: D, dtype: int64
Run Code Online (Sandbox Code Playgroud)
如果我使用其中一个rolling_*函数,例如rolling_sum,我可以获得我想要的向后看滚动计算的行为:
In [157]: pd.rolling_sum(ts, window=3, min_periods=0)
Out[157]:
2011-01-10 0
2011-01-11 1
2011-01-12 3
2011-01-13 6
2011-01-14 9
2011-01-15 12
2011-01-16 15
2011-01-17 18
2011-01-18 21
2011-01-19 24
Freq: D, dtype: float64
Run Code Online (Sandbox Code Playgroud)
但是,如果我想做一个前瞻性的总和怎么办?我尝试过这样的事情:
In [161]: pd.rolling_sum(ts.shift(-2, freq='D'), window=3, min_periods=0)
Out[161]:
2011-01-08 0
2011-01-09 …Run Code Online (Sandbox Code Playgroud)