def GaussianMatrix(X,sigma):
row,col=X.shape
GassMatrix=np.zeros(shape=(row,row))
X=np.asarray(X)
i=0
for v_i in X:
j=0
for v_j in X:
GassMatrix[i,j]=Gaussian(v_i.T,v_j.T,sigma)
j+=1
i+=1
return GassMatrix
def Gaussian(x,z,sigma):
return np.exp((-(np.linalg.norm(x-z)**2))/(2*sigma**2))
Run Code Online (Sandbox Code Playgroud)
这是我目前的方式.有什么方法可以使用矩阵运算来做到这一点吗?X是数据点.
可以使用自己的过滤器而不是 Conv2D 中的过滤器数量设置参数过滤器数组
filters = [[[1,0,0],[1,0,0],[1,0,0]],
[[1,0,0],[0,1,0],[0,0,1]],
[[0,1,0],[0,1,0],[0,1,0]],
[[0,0,1],[0,0,1],[0,0,1]]]
model = Sequential()
model.add(Conv2D(filters, (3, 3), activation='relu', input_shape=(3, 1024, 1024), data_format='channels_first'))
Run Code Online (Sandbox Code Playgroud)