尝试使用unet模型训练pytorch模型(初学者)Im,我将图像输入作为输入,并随同将标签输入作为输入图像蒙版并在其上转换数据集。我从其他地方获得了unet模型,我将交叉熵损失用作损失函数,但是我得到的尺寸超出了范围误差,
`RuntimeError Traceback (most recent call last)
<ipython-input-358-fa0ef49a43ae> in <module>()
16 for epoch in range(0, num_epochs):
17 # train for one epoch
---> 18 curr_loss = train(train_loader, model, criterion, epoch, num_epochs)
19
20 # store best loss and save a model checkpoint
<ipython-input-356-1bd6c6c281fb> in train(train_loader, model, criterion, epoch, num_epochs)
16 # measure loss
17 print (outputs.size(),labels.size())
---> 18 loss = criterion(outputs, labels)
19 losses.update(loss.data[0], images.size(0))
20
/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py in _ _call__(self, *input, **kwargs)
323 for hook in self._forward_pre_hooks.values():
324 hook(self, input) …Run Code Online (Sandbox Code Playgroud) pytorch ×1