相关疑难解决方法(0)

如果列中的值位于设置的值列表中,则过滤数据帧行

我有一个Python pandas DataFrame rpt:

rpt
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 47518 entries, ('000002', '20120331') to ('603366', '20091231')
Data columns:
STK_ID                    47518  non-null values
STK_Name                  47518  non-null values
RPT_Date                  47518  non-null values
sales                     47518  non-null values
Run Code Online (Sandbox Code Playgroud)

我可以过滤库存ID '600809'如下的行:rpt[rpt['STK_ID'] == '600809']

<class 'pandas.core.frame.DataFrame'>
MultiIndex: 25 entries, ('600809', '20120331') to ('600809', '20060331')
Data columns:
STK_ID                    25  non-null values
STK_Name                  25  non-null values
RPT_Date                  25  non-null values
sales                     25  non-null values
Run Code Online (Sandbox Code Playgroud)

我想把一些股票的所有行放在一起,例如['600809','600141','600329'].这意味着我想要这样的语法:

stk_list = ['600809','600141','600329']

rst = rpt[rpt['STK_ID'] in stk_list] # …
Run Code Online (Sandbox Code Playgroud)

python dataframe pandas

378
推荐指数
7
解决办法
27万
查看次数

大熊猫不在,在和之间

PD.版本 '0.14.0'

我需要为数据框中的列做一个非in语句.

对于isin语句,我使用以下内容来过滤我需要的代码:

h1 = df1[df1['nat_actn_2_3'].isin(['100','101','102','103','104'])]
Run Code Online (Sandbox Code Playgroud)

我想做一个不在或不等于(不确定哪个用于python)语句为另一列.

所以我尝试了以下方法:

h1 = df1[df1['csc_auth_12'].notin(['N6M','YEM','YEL','YEM'])]

h1 = df1[df1['csc_auth_12'] not in (['N6M','YEM','YEL','YEM'])]
Run Code Online (Sandbox Code Playgroud)

和:

h1.query(['N6M','YEM','YEL','YEM'] not in ['csc_auth_12'])
Run Code Online (Sandbox Code Playgroud)

我真的想从数据集中过滤出N6M,YEM,YEL和YEM.

我也对如何做一个声明之间的兴趣感兴趣.

因此,对于以下内容,我必须手动输入所有500个代码.我想做的事情如下:

h1 = df1[df1['nat_actn_2_3'].isin['100','102'] and isbetween [500 & 599])]
Run Code Online (Sandbox Code Playgroud)

但这就是我所拥有的:

h1 = df1[df1['nat_actn_2_3'].isin(['100','101','102','103','104','107','108','112','115','117','120','122','124','128',
                             '130','132','132','140','141','142','143','145','146','147','148','149','170','171',
                             '172','173','179','190','198','199','501','502','503','504','505','506','507','508',
                             '509','510','511','512','513','514','515','516','517','518','519','520','521','522',
                             '523','524','525','526','527','528','529','530','531','532','533','534','535','536',
                             '537','538','539','540','541','542','543','544','545','546','547','548','549','550',
                             '551','552','553','554','555','556','557','558','559','560','561','562','563','564',
                             '565','566','567','568','569','570','571','572','573','574','575','576','577','578',
                             '579','580','581','582','583','584','585','586','587','588','589','590','591','592',
                             '593','594','595','596','597','598','599','702','721','740','953','955'])]
Run Code Online (Sandbox Code Playgroud)

有什么建议?

谢谢.

numpy pandas

4
推荐指数
1
解决办法
2197
查看次数

标签 统计

pandas ×2

dataframe ×1

numpy ×1

python ×1