相关疑难解决方法(0)

对每个进程使用带有不同随机种子的python多处理

我希望并行运行几个模拟实例,但每个模拟都有自己独立的数据集.

目前我实现如下:

P = mp.Pool(ncpus) # Generate pool of workers
for j in range(nrun): # Generate processes
    sim = MDF.Simulation(tstep, temp, time, writeout, boundaryxy, boundaryz, relax, insert, lat,savetemp)
    lattice = MDF.Lattice(tstep, temp, time, writeout, boundaryxy, boundaryz, relax, insert, lat, kb, ks, kbs, a, p, q, massL, randinit, initvel, parangle,scaletemp,savetemp)
    adatom1 = MDF.Adatom(tstep, temp, time, writeout, boundaryxy, boundaryz, relax, insert, lat, ra, massa, amorse, bmorse, r0, z0, name, lattice, samplerate,savetemp)        
    P.apply_async(run,(j,sim,lattice,adatom1),callback=After) # run simulation and ISF analysis in each process
P.close() …
Run Code Online (Sandbox Code Playgroud)

python multiprocessing

20
推荐指数
2
解决办法
1万
查看次数

multiprocessing.pool.map和带有两个参数的函数

我在用 multiprocessing.Pool()

这是我想要的池:

def insert_and_process(file_to_process,db):
    db = DAL("path_to_mysql" + db)
    #Table Definations
    db.table.insert(**parse_file(file_to_process))
    return True

if __name__=="__main__":
    file_list=os.listdir(".")
    P = Pool(processes=4)
    P.map(insert_and_process,file_list,db) # here having problem.
Run Code Online (Sandbox Code Playgroud)

我想传递2个参数我想要做的只是初始化4个DB连接(这里将尝试在每个函数调用上创建连接,因此可能有数百万个连接并导致IO Freezed死亡).如果我可以为每个进程创建4个数据库连接和1个,那就可以.

Pool有什么解决方案吗?还是我应该抛弃它?

编辑:

从你们两个人的帮助下我得到了这个:

args=zip(f,cycle(dbs))
Out[-]: 
[('f1', 'db1'),
 ('f2', 'db2'),
 ('f3', 'db3'),
 ('f4', 'db4'),
 ('f5', 'db1'),
 ('f6', 'db2'),
 ('f7', 'db3'),
 ('f8', 'db4'),
 ('f9', 'db1'),
 ('f10', 'db2'),
 ('f11', 'db3'),
 ('f12', 'db4')]
Run Code Online (Sandbox Code Playgroud)

所以这里它将如何工作,我将数据库连接代码移动到主要级别并执行此操作:

def process_and_insert(args):

    #Table Definations
    args[1].table.insert(**parse_file(args[0]))
    return True

if __name__=="__main__":
    file_list=os.listdir(".")
    P = Pool(processes=4)

    dbs = [DAL("path_to_mysql/database") for i in range(0,3)]
    args=zip(file_list,cycle(dbs))
    P.map(insert_and_process,args) …
Run Code Online (Sandbox Code Playgroud)

python concurrency multithreading multiprocessing

10
推荐指数
3
解决办法
3万
查看次数

Keras(Tensorflow后端)错误-在图表中找不到在feed_devices或fetch_devices中指定的Tensor输入_1:0

当我尝试使用简单的模型进行预测时,我得到了以下错误:

在图表中找不到在feed_devices或fetch_devices中指定的张量输入_1:0

在行:

seatbelt_model.predict(image_arr, verbose=1)
Run Code Online (Sandbox Code Playgroud)

在代码中:

from tensorflow import keras
import tensorflow as tf
import numpy as np

graph = tf.get_default_graph()

seatbelt_model = keras.models.load_model(filepath='./graphs/seatbelt_A_3_81.h5')

class SeatbeltPredictor:
    INPUT_SHAPE = (-1, 120, 160, 1)

    @staticmethod
    def predict_seatbelt(image_arr):
        with graph.as_default():
            image_arr = np.array(image_arr).reshape(SeatbeltPredictor.INPUT_SHAPE)
            predicted_labels = seatbelt_model.predict(image_arr, verbose=1)
            return predicted_labels
Run Code Online (Sandbox Code Playgroud)

该模型具有以下形状:

input_layer = keras.layers.Input(shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 1))
conv_0 = keras.layers.Conv2D(filters=32, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME")(input_layer)
pool_0 = keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="VALID")(conv_0)
conv_1 = keras.layers.Conv2D(filters=32, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME")(pool_0)
pool_1 = keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="VALID")(conv_1)
flat_0 = …
Run Code Online (Sandbox Code Playgroud)

python keras tensorflow

6
推荐指数
2
解决办法
4855
查看次数