相关疑难解决方法(0)

如何使用Keras TensorBoard回调进行网格搜索

我正在使用Keras TensorBoard回调.我想运行网格搜索并可视化张量板中每个模型的结果.问题是不同运行的所有结果合并在一起,损失情节是这样的混乱: 在此输入图像描述

如何重命名每次运行以获得类似于此的内容: 在此输入图像描述

这里是网格搜索的代码:

df = pd.read_csv('data/prepared_example.csv')

df = time_series.create_index(df, datetime_index='DATE', other_index_list=['ITEM', 'AREA'])

target = ['D']
attributes = ['S', 'C', 'D-10','D-9', 'D-8', 'D-7', 'D-6', 'D-5', 'D-4',
       'D-3', 'D-2', 'D-1']

input_dim = len(attributes)
output_dim = len(target)

x = df[attributes]
y = df[target]

param_grid = {'epochs': [10, 20, 50],
              'batch_size': [10],
              'neurons': [[10, 10, 10]],
              'dropout': [[0.0, 0.0], [0.2, 0.2]],
              'lr': [0.1]}

estimator = KerasRegressor(build_fn=create_3_layers_model,
                           input_dim=input_dim, output_dim=output_dim)


tbCallBack = TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=False)

grid = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1, scoring=bug_fix_score,
                            cv=3, verbose=0, fit_params={'callbacks': …
Run Code Online (Sandbox Code Playgroud)

python scikit-learn keras tensorflow tensorboard

10
推荐指数
1
解决办法
1700
查看次数

如何用张量板监测keras中的梯度消失和爆炸?

我想用keras监测张量板中的梯度变化,以确定梯度是否消失或爆炸.我该怎么办?

python keras tensorflow tensorboard tensorflow-gradient

9
推荐指数
1
解决办法
3069
查看次数

构造Keras Tensorboard图

当我创建一个简单的Keras模型时

model = Sequential()
model.add(Dense(10, activation='tanh', input_dim=1))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mean_squared_error'])
Run Code Online (Sandbox Code Playgroud)

并回调到Tensorboard

tensorboard = TensorBoard(log_dir='c:/temp/tensorboard/run1', histogram_freq=1, write_graph=True, write_images=False)
model.fit(x, y, epochs=1000, batch_size=1, callbacks=[tensorboard])
Run Code Online (Sandbox Code Playgroud)

Tensorboard中的输出如下所示: 在此处输入图片说明

换句话说,这是一团糟。

  1. 有什么我可以做的来使图形输出看起来更有条理吗?
  2. 如何使用Keras和Tensorboard创建权重的直方图?

keras tensorboard

6
推荐指数
1
解决办法
5208
查看次数