我使用的是Windows 10,Python 3.5和tensorflow 1.1.0.我有以下脚本:
import tensorflow as tf
import tensorflow.contrib.keras.api.keras.backend as K
from tensorflow.contrib.keras.api.keras.layers import Dense
tf.reset_default_graph()
init = tf.global_variables_initializer()
sess = tf.Session()
K.set_session(sess) # Keras will use this sesssion to initialize all variables
input_x = tf.placeholder(tf.float32, [None, 10], name='input_x')
dense1 = Dense(10, activation='relu')(input_x)
sess.run(init)
dense1.get_weights()
Run Code Online (Sandbox Code Playgroud)
我收到错误: AttributeError: 'Tensor' object has no attribute 'weights'
我正在使用Keras运行一个简单的前馈网络.只有一个隐藏层我想对每个输入与每个输出的相关性做一些推断,我想提取权重.
这是模型:
def build_model(input_dim, output_dim):
n_output_layer_1 = 150
n_output = output_dim
model = Sequential()
model.add(Dense(n_output_layer_1, input_dim=input_dim, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(n_output))
Run Code Online (Sandbox Code Playgroud)
为了提取我写的重量:
for layer in model.layers:
weights = layer.get_weights()
weights = np.array(weights[0]) #this is hidden to output
first = model.layers[0].get_weights() #input to hidden
first = np.array(first[0])
Run Code Online (Sandbox Code Playgroud)
不幸的是,我没有得到矩阵中的偏差列,我知道Keras会自动插入它.
你知道如何检索偏差权重吗?
预先感谢您的帮助 !