这可能是一个微不足道的问题,但我如何在python中并行化以下循环?
# setup output lists
output1 = list()
output2 = list()
output3 = list()
for j in range(0, 10):
# calc individual parameter value
parameter = j * offset
# call the calculation
out1, out2, out3 = calc_stuff(parameter = parameter)
# put results into correct output list
output1.append(out1)
output2.append(out2)
output3.append(out3)
Run Code Online (Sandbox Code Playgroud)
我知道如何在Python中启动单线程,但我不知道如何"收集"结果.
多个过程也可以 - 对于这种情况最简单的事情.我正在使用当前的Linux,但代码应该在Windows和Mac上运行.
并行化此代码的最简单方法是什么?
我有一个多线程函数,我想要一个使用状态栏tqdm
。有没有一种简单的方法可以显示状态栏ThreadPoolExecutor
?正是并行化部分使我感到困惑。
import concurrent.futures
def f(x):
return f**2
my_iter = range(1000000)
def run(f,my_iter):
with concurrent.futures.ThreadPoolExecutor() as executor:
function = list(executor.map(f, my_iter))
return results
run(f, my_iter) # wrap tqdr around this function?
Run Code Online (Sandbox Code Playgroud) 我想监控不同进程的多个工作人员的进度。对于每个子进程,我都有自己的进度条,但它不能与ProcessPoolExecutor
执行程序正常工作。
def main():
with futures.ProcessPoolExecutor(max_workers=PROCESSES) as executor:
fut_to_num = {}
for i in range(PROCESSES):
fut = executor.submit(execute_many_threads, i)
fut_to_num[fut] = i
for future in futures.as_completed(fut_to_num):
r = future.result()
# print('{} returned {}'.format(fut_to_num[future], r))
print('\nDone!\n')
def execute_many_threads(n_pool=0):
with futures.ThreadPoolExecutor(max_workers=THREADS) as executor:
for i in range(THREADS):
executor.submit(execute_thread, n_pool, i)
return n_pool+1
def execute_thread(n_pool=0, n_thread=0):
s = random.randint(1, 5)
thread_num = n_pool*(PROCESSES-1) + n_thread
progress = tqdm.tqdm(
desc='#{:02d}'.format(thread_num),
position=thread_num,
total=10*s,
leave=False,
)
# print('Executing {}: {}...'.format(thread_num, s))
for i in range(s): …
Run Code Online (Sandbox Code Playgroud) python concurrent.futures python-multiprocessing tqdm process-pool
我正在做一些并行处理,如下所示:
with mp.Pool(8) as tmpPool:
results = tmpPool.starmap(my_function, inputs)
Run Code Online (Sandbox Code Playgroud)
输入看起来像:[(1,0.2312),(5,0.52)...],即一个int和float的元组。
该代码运行良好,但我似乎无法将其包裹在加载栏(tqdm)上,例如可以使用imap方法完成,如下所示:
tqdm.tqdm(mp.imap(some_function,some_inputs))
Run Code Online (Sandbox Code Playgroud)
星图也可以做到吗?
谢谢!
python multiprocessing python-multiprocessing tqdm process-pool