相关疑难解决方法(0)

Matplotlib烛台(日内)图表是一个大Blob

我正在尝试使用Matplotlib绘制烛台图表,以及我为REST API调用获取的数据.但是,由于调用使用了唯一的访问令牌,因此我已下载了一个示例数据并将其加载到csv中以用于此问题.这是一个指向示例数据的pastebin链接.要在Python中处理数据,我使用Pandas来创建数据帧.这是我的代码的样子:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from matplotlib.finance import candlestick_ohlc
from datetime import date

""" Pandas """
historic_df = pd.read_csv("sample_data.csv")

dates = pd.to_datetime(historic_df['time'], format="%Y-%m-%dT%H:%M:%S.%fZ")
openp = historic_df['openAsk']
highp =  historic_df['highAsk']
lowp =  historic_df['lowAsk']
closep =  historic_df['closeAsk']

""" Matplotlib """
ax1 = plt.subplot2grid((1,1), (0,0))
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))

x = 0
ohlc = []

while x < len(dates):
    d = mdates.date2num(dates[x])
    append_me = d, openp.values[x], highp.values[x], lowp.values[x], closep.values[x] …
Run Code Online (Sandbox Code Playgroud)

python matplotlib pandas

3
推荐指数
1
解决办法
2560
查看次数

Matplotlib烛台在几分钟内

下午好,

我想看看你们中谁能在几分钟内帮我做个蜡烛图。我已经设法在几天内绘制出它们的图形,但是我不知道如何在几分钟内完成它们。

附加代码。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import dates, ticker
import matplotlib as mpl
from mpl_finance import candlestick_ohlc

mpl.style.use('default')

data = [('2017-01-02 02:00:00', '1.05155', '1.05197', '1.05155', '1.0519'),
    ('2017-01-02 02:01:00', '1.05209', '1.05209', '1.05177', '1.05179'),
    ('2017-01-02 02:02:00', '1.05177', '1.05198', '1.05177', '1.05178'),
    ('2017-01-02 02:03:00', '1.05188', '1.052', '1.05188', '1.052'),
    ('2017-01-02 02:04:00', '1.05196', '1.05204', '1.05196', '1.05203'),
    ('2017-01-02 02:06:00', '1.05196', '1.05204', '1.05196', '1.05204'),
    ('2017-01-02 02:07:00', '1.05205', '1.0521', '1.05205', '1.05209'),
    ('2017-01-02 02:08:00', '1.0521', '1.0521', '1.05209', '1.05209'),
    ('2017-01-02 02:09:00', '1.05208', '1.05209', '1.05208', …
Run Code Online (Sandbox Code Playgroud)

python matplotlib

2
推荐指数
1
解决办法
3359
查看次数

标签 统计

matplotlib ×2

python ×2

pandas ×1