当我只使用mtry参数作为tuingrid,它工作,但当我添加ntree参数时,错误变为Error in train.default(x, y, weights = w, ...): The tuning parameter grid should have columns mtry.代码如下:
require(RCurl)
require(prettyR)
library(caret)
url <- "https://raw.githubusercontent.com/gastonstat/CreditScoring/master/CleanCreditScoring.csv"
cs_data <- getURL(url)
cs_data <- read.csv(textConnection(cs_data))
classes <- cs_data[, "Status"]
predictors <- cs_data[, -match(c("Status", "Seniority", "Time", "Age", "Expenses",
"Income", "Assets", "Debt", "Amount", "Price", "Finrat", "Savings"), colnames(cs_data))]
train_set <- createDataPartition(classes, p = 0.8, list = FALSE)
set.seed(123)
cs_data_train = cs_data[train_set, ]
cs_data_test = cs_data[-train_set, ]
# Define the tuned parameter
grid …Run Code Online (Sandbox Code Playgroud) 对于 CART 模型,caret 似乎只提供复杂性参数的调整。有没有办法调整其他参数,例如 minbucket?