我一直在绞尽脑汁想要完成这项任务一周,我希望有人能带领我走向正确的道路.让我从教师的指示开始:
您的作业与我们的第一个实验作业相反,即优化素数计划.你在这个任务中的目的是使程序失望,即让它运行得更慢.这两个都是CPU密集型程序.他们需要几秒钟才能在我们的实验室电脑上运行.您可能无法更改算法.
要取消优化程序,请使用您对英特尔i7管道如何运行的了解.想象一下重新排序指令路径以引入WAR,RAW和其他危险的方法.想一想最小化缓存有效性的方法.恶魔无能.
该作业选择了Whetstone或Monte-Carlo程序.缓存有效性评论大多只适用于Whetstone,但我选择了Monte-Carlo模拟程序:
// Un-modified baseline for pessimization, as given in the assignment
#include <algorithm> // Needed for the "max" function
#include <cmath>
#include <iostream>
// A simple implementation of the Box-Muller algorithm, used to generate
// gaussian random numbers - necessary for the Monte Carlo method below
// Note that C++11 actually provides std::normal_distribution<> in
// the <random> library, which can be used instead of this function
double gaussian_box_muller() {
double x = 0.0;
double y = 0.0; …Run Code Online (Sandbox Code Playgroud) 考虑:
#include <time.h>
#include <unistd.h>
#include <iostream>
using namespace std;
const int times = 1000;
const int N = 100000;
void run() {
for (int j = 0; j < N; j++) {
}
}
int main() {
clock_t main_start = clock();
for (int i = 0; i < times; i++) {
clock_t start = clock();
run();
cout << "cost: " << (clock() - start) / 1000.0 << " ms." << endl;
//usleep(1000);
}
cout << "total cost: " << …Run Code Online (Sandbox Code Playgroud) 我想知道各种大小的循环如何在最近的x86处理器上执行,作为uop数的函数.
以下是彼得·科德斯(Peter Cordes)的一句话,他在另一个问题中提出了非多数的问题:
我还发现,如果循环不是4 uop的倍数,则循环缓冲区中的uop带宽不是每个循环的常数4.(即它是abc,abc,......;不是abca,bcab,......).遗憾的是,Agner Fog的microarch doc对循环缓冲区的这种限制并不清楚.
问题是关于循环是否需要是N uop的倍数才能以最大uop吞吐量执行,其中N是处理器的宽度.(即最近的英特尔处理器为4).在谈论"宽度"和计算微动时,有很多复杂因素,但我大多想忽略这些因素.特别是,假设没有微观或宏观融合.
Peter给出了以下一个循环,其中包含7个uop的循环:
一个7-uop循环将发出4 | 3 | 4 | 3 | ...的组我没有测试更大的循环(不适合循环缓冲区),看看是否有可能从下一个指令开始迭代发布在与其分支相同的组中,但我不假设.
更一般地说,声称是x在其体内具有uops 的循环的每次迭代将至少进行ceil(x / 4)迭代,而不是简单地迭代x / 4.
对于部分或全部最新的x86兼容处理器,这是真的吗?
performance x86 assembly cpu-architecture micro-optimization