在汇编编程中,想要从寄存器的低位计算某些东西是相当普遍的,这些位不能保证将其他位置零.在像C这样的高级语言中,你只需将输入转换为小尺寸,让编译器决定是否需要分别将每个输入的高位归零,或者是否可以在输出之后切断结果的高位.事实.
这是为x86-64的(又名AMD64),出于各种原因尤其常见1,其中的一些是存在于其它的ISA.
我将使用64位x86作为示例,但目的是询问/讨论2的补码和无符号二进制算法,因为所有现代CPU都使用它.(注意,C和C++不保证两个补码4,并且有符号溢出是未定义的行为.)
作为示例,考虑一个可以编译为LEA指令2的简单函数.(在X86-64 SysV的(Linux)的ABI 3,前两个函数参数是rdi和rsi,与在返回rax. int是一个32位的类型.)
; int intfunc(int a, int b) { return a + b*4 + 3; }
intfunc:
lea eax, [edi + esi*4 + 3] ; the obvious choice, but gcc can do better
ret
Run Code Online (Sandbox Code Playgroud)
gcc知道即使是负有符号整数,加法也只是从右到左,所以输入的高位不会影响进入的内容eax.因此,它保存了一个指令字节并使用 lea eax, [rdi + rsi*4 + 3]
为什么它有效?
1为什么x86-64频繁出现这种情况:x86-64有可变长度指令,其中额外的前缀字节改变了操作数大小(从32到64或16),因此在指令中通常可以保存一个字节.以相同的速度执行.当写入低8b或16b的寄存器(或稍后读取完整寄存器(Intel pre-IvB)时的失速)时,它也具有错误依赖性(AMD/P4/Silvermont):由于历史原因, …