我为Project Euler Q14编写了这两个解决方案,在汇编和C++中.它们是用于测试Collatz猜想的相同蛮力方法.装配解决方案与组装
nasm -felf64 p14.asm && gcc p14.o -o p14
Run Code Online (Sandbox Code Playgroud)
C++是用.编译的
g++ p14.cpp -o p14
Run Code Online (Sandbox Code Playgroud)
部件, p14.asm
section .data
fmt db "%d", 10, 0
global main
extern printf
section .text
main:
mov rcx, 1000000
xor rdi, rdi ; max i
xor rsi, rsi ; i
l1:
dec rcx
xor r10, r10 ; count
mov rax, rcx
l2:
test rax, 1
jpe even
mov rbx, 3
mul rbx
inc rax
jmp c1
even:
mov rbx, 2 …Run Code Online (Sandbox Code Playgroud) 我想实现的无符号一整数除法通过两个任意功率,围捕,高效.所以我想要的,数学上是ceiling(p/q)0.在C中,不利用受限域的strawman实现q可能类似于以下函数1:
/** q must be a power of 2, although this version works for any q */
uint64_t divide(uint64_t p, uint64_t q) {
uint64_t res = p / q;
return p % q == 0 ? res : res + 1;
}
Run Code Online (Sandbox Code Playgroud)
...当然,我实际上并不想在机器级别使用除法或mod,因为即使在现代硬件上也需要很多周期.我正在寻找使用轮班和/或其他一些廉价操作的力量减少 - 利用q2的力量这一事实.
You can assume we have an efficient lg(unsigned int x) function, which returns the base-2 log of x …
我想矢量化两个内存对齐数组的乘法.我没有找到任何方法在AVX/AVX2中乘以64*64位,所以我只是循环展开和AVX2加载/存储.有更快的方法吗?
注意:我不想保存每次乘法的高半结果.
void multiply_vex(long *Gi_vec, long q, long *Gj_vec){
int i;
__m256i data_j, data_i;
__uint64_t *ptr_J = (__uint64_t*)&data_j;
__uint64_t *ptr_I = (__uint64_t*)&data_i;
for (i=0; i<BASE_VEX_STOP; i+=4) {
data_i = _mm256_load_si256((__m256i*)&Gi_vec[i]);
data_j = _mm256_load_si256((__m256i*)&Gj_vec[i]);
ptr_I[0] -= ptr_J[0] * q;
ptr_I[1] -= ptr_J[1] * q;
ptr_I[2] -= ptr_J[2] * q;
ptr_I[3] -= ptr_J[3] * q;
_mm256_store_si256((__m256i*)&Gi_vec[i], data_i);
}
for (; i<BASE_DIMENSION; i++)
Gi_vec[i] -= Gj_vec[i] * q;
}
Run Code Online (Sandbox Code Playgroud)
更新:
我正在使用Haswell微体系结构和ICC/GCC编译器.所以AVX和AVX2都很好.我在乘法循环展开后-=用C inrisic 替换_mm256_sub_epi64它,在那里得到一些加速.目前,它是ptr_J[0] *= q; ...
我用, …