我可以从决策树中的受过训练的树中提取基础决策规则(或"决策路径")作为文本列表吗?
就像是:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
谢谢你的帮助.
python machine-learning decision-tree random-forest scikit-learn
我一直在探索scikit-learn,使用熵和基尼分裂标准制定决策树,并探索差异.
我的问题是,我如何"打开引擎盖"并确切地找出树在每个级别上分裂的属性及其相关的信息值,以便我可以看到这两个标准在哪里做出不同的选择?
到目前为止,我已经探索了文档中概述的9种方法.它们似乎不允许访问此信息.但是这些信息肯定是可以访问的吗?我正在设想一个包含节点和增益条目的列表或字典.
如果我错过了一些完全明显的东西,感谢您的帮助和道歉.