相关疑难解决方法(0)

如何将不同的输入装入sklearn管道?

我正在使用sklearn中的Pipeline对文本进行分类.

在这个例子中,Pipeline我有一个TfIDF矢量化器和一些用FeatureUnion包装的自定义特征和一个分类器作为Pipeline步骤,然后我拟合训练数据并进行预测:

from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC

X = ['I am a sentence', 'an example']
Y = [1, 2]
X_dev = ['another sentence']

# load custom features and FeatureUnion with Vectorizer
features = []
measure_features = MeasureFeatures() # this class includes my custom features
features.append(('measure_features', measure_features))

countVecWord = TfidfVectorizer(ngram_range=(1, 3), max_features= 4000)
features.append(('ngram', countVecWord))

all_features = FeatureUnion(features)

# classifier
LinearSVC1 = LinearSVC(tol=1e-4,  C = 0.10000000000000001)

pipeline = Pipeline(
    [('all', all_features ),
    ('clf', …
Run Code Online (Sandbox Code Playgroud)

python pipeline classification machine-learning scikit-learn

7
推荐指数
1
解决办法
3413
查看次数