是否有更有效的方法在预先指定的箱中取平均数组?例如,我有一个数字数组和一个对应于该数组中bin开始和结束位置的数组,我想在这些数据库中取平均值?我有下面的代码,但我想知道如何减少和改进它.谢谢.
from scipy import *
from numpy import *
def get_bin_mean(a, b_start, b_end):
ind_upper = nonzero(a >= b_start)[0]
a_upper = a[ind_upper]
a_range = a_upper[nonzero(a_upper < b_end)[0]]
mean_val = mean(a_range)
return mean_val
data = rand(100)
bins = linspace(0, 1, 10)
binned_data = []
n = 0
for n in range(0, len(bins)-1):
b_start = bins[n]
b_end = bins[n+1]
binned_data.append(get_bin_mean(data, b_start, b_end))
print binned_data
Run Code Online (Sandbox Code Playgroud) 我有一个包含时间序列数据的numpy数组.我想将该数组分成给定长度的相等分区(如果它的大小不同,可以删除最后一个分区),然后计算每个分区的平均值.
我怀疑有这样的numpy,scipy或pandas功能.
例:
data = [4,2,5,6,7,5,4,3,5,7]
Run Code Online (Sandbox Code Playgroud)
对于bin大小为2:
bin_data = [(4,2),(5,6),(7,5),(4,3),(5,7)]
bin_data_mean = [3,5.5,6,3.5,6]
Run Code Online (Sandbox Code Playgroud)
对于bin大小为3:
bin_data = [(4,2,5),(6,7,5),(4,3,5)]
bin_data_mean = [7.67,6,4]
Run Code Online (Sandbox Code Playgroud)