使用样本数据:
df = pd.DataFrame({'key1' : ['a','a','b','b','a'],
'key2' : ['one', 'two', 'one', 'two', 'one'],
'data1' : np.random.randn(5),
'data2' : np. random.randn(5)})
Run Code Online (Sandbox Code Playgroud)
DF
data1 data2 key1 key2
0 0.361601 0.375297 a one
1 0.069889 0.809772 a two
2 1.468194 0.272929 b one
3 -1.138458 0.865060 b two
4 -0.268210 1.250340 a one
Run Code Online (Sandbox Code Playgroud)
我试图找出如何按key1对数据进行分组,并仅将key2等于'one'的data1值相加.
这是我尝试过的
def f(d,a,b):
d.ix[d[a] == b, 'data1'].sum()
df.groupby(['key1']).apply(f, a = 'key2', b = 'one').reset_index()
Run Code Online (Sandbox Code Playgroud)
但这给了我一个"无"值的数据框
index key1 0
0 a None
1 b None
Run Code Online (Sandbox Code Playgroud)
这里有什么想法?我正在寻找与以下SQL相当的Pandas:
SELECT Key1, SUM(CASE WHEN …Run Code Online (Sandbox Code Playgroud) 给定df
df = pd.DataFrame([[1, 5, 2, 8, 2], [2, 4, 4, 20, 2], [3, 3, 1, 20, 2], [4, 2, 2, 1, 3], [5, 1, 4, -5, -4], [1, 5, 2, 2, -20],
[2, 4, 4, 3, -8], [3, 3, 1, -1, -1], [4, 2, 2, 0, 12], [5, 1, 4, 20, -2]],
columns=['A', 'B', 'C', 'D', 'E'], index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
Run Code Online (Sandbox Code Playgroud)
根据这个答案,我创建了一个计算条纹(向上,向下)的函数.
def streaks(df, column):
#Create sign column
df['sign'] = 0 …Run Code Online (Sandbox Code Playgroud)