相关疑难解决方法(0)

sklearn:TFIDF Transformer:如何获取文档中给定单词的tf-idf值

我使用sklean使用命令as计算文档中术语的TFIDF值

from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(documents)
from sklearn.feature_extraction.text import TfidfTransformer
tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
X_train_tf = tf_transformer.transform(X_train_counts)
Run Code Online (Sandbox Code Playgroud)

X_train_tf是scipy稀疏形状矩阵

from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(documents)
from sklearn.feature_extraction.text import TfidfTransformer
tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
X_train_tf = tf_transformer.transform(X_train_counts)
Run Code Online (Sandbox Code Playgroud)

输出为(2257,35788).如何在特定文档中获取TF-IDF?更具体地说,如何在给定文档中获取具有最大TF-IDF值的单词?

python scikit-learn

26
推荐指数
3
解决办法
4万
查看次数

标签 统计

python ×1

scikit-learn ×1