我有一些文本类型的pandas数据.这些文本列中包含一些NaN值.我想要做的就是通过sklearn.preprocessing.Imputer
(以最常见的值取代NaN )来归咎于那些NaN .问题在于实施.假设有一个包含30列的Pandas数据帧df,其中10列具有分类性质.一旦我跑:
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
imp.fit(df)
Run Code Online (Sandbox Code Playgroud)
Python生成一个error: 'could not convert string to float: 'run1''
,其中'run1'是来自第一列的普通(非缺失)值,带有分类数据.
任何帮助都会非常受欢迎
当我尝试将spark数据帧写入postgres DB时出现此错误。我正在使用本地群集,代码如下:
from pyspark import SparkContext
from pyspark import SQLContext, SparkConf
import os
os.environ["SPARK_CLASSPATH"] = '/usr/share/java/postgresql-jdbc4.jar'
conf = SparkConf() \
.setMaster('local[2]') \
.setAppName("test")
sc = SparkContext(conf=conf)
sqlContext = SQLContext(sc)
df = sc.parallelize([("a", "b", "c", "d")]).toDF()
url_connect = "jdbc:postgresql://localhost:5432"
table = "table_test"
mode = "overwrite"
properties = {"user":"postgres", "password":"12345678"}
df.write.option('driver', 'org.postgresql.Driver').jdbc(
url_connect, table, mode, properties)
Run Code Online (Sandbox Code Playgroud)
错误日志如下:
Py4JJavaError: An error occurred while calling o119.jdbc.
: java.lang.NullPointerException
at org.apache.spark.sql.DataFrameWriter.jdbc(DataFrameWriter.scala:308)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at …
Run Code Online (Sandbox Code Playgroud) apache-spark ×1
imputation ×1
jdbc ×1
pandas ×1
postgresql ×1
pyspark ×1
python ×1
scikit-learn ×1