我只是想做一个简单的RandomForestRegressor示例.但在测试准确性时,我得到了这个错误
Run Code Online (Sandbox Code Playgroud)/Users/noppanit/anaconda/lib/python2.7/site-packages/sklearn/metrics/classification.pycin accuracy_score(y_true,y_pred,normalize,sample_weight)177 178#计算每种可能表示的准确性 - > 179 y_type,y_true,y_pred = _check_targets(y_true,y_pred)180如果y_type.startswith('multilabel'):181 differing_labels = count_nonzero(y_true - y_pred,axis = 1)
Run Code Online (Sandbox Code Playgroud)/Users/noppanit/anaconda/lib/python2.7/site-packages/sklearn/metrics/classification.pycin _check_targets(y_true,y_pred)90 if(y_type不在["binary","multiclass","multilabel-indicator",91"multilabel-sequences"]):---> 92引发ValueError("{0}是不支持".format(y_type)"93 94如果["binary","multiclass"]中的y_type:
Run Code Online (Sandbox Code Playgroud)ValueError: continuous is not supported
这是数据的样本.我无法显示真实数据.
target, func_1, func_2, func_2, ... func_200
float, float, float, float, ... float
Run Code Online (Sandbox Code Playgroud)
这是我的代码.
import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn import tree
train = pd.read_csv('data.txt', sep='\t')
labels = …Run Code Online (Sandbox Code Playgroud)