我想用来geom_smooth从某个线性回归模型中得到拟合线.
在我看来,公式只能采取x,y而不是任何额外的参数.
为了更清楚地显示我想要的东西:
library(dplyr)
library(ggplot2)
set.seed(35413)
df <- data.frame(pred = runif(100,10,100),
factor = sample(c("A","B"), 100, replace = TRUE)) %>%
mutate(
outcome = 100 + 10*pred +
ifelse(factor=="B", 200, 0) +
ifelse(factor=="B", 4, 0)*pred +
rnorm(100,0,60))
Run Code Online (Sandbox Code Playgroud)
同
ggplot(df, aes(x=pred, y=outcome, color=factor)) +
geom_point(aes(color=factor)) +
geom_smooth(method = "lm") +
theme_bw()
Run Code Online (Sandbox Code Playgroud)
我生产的装配线,由于color=factor选项,基本上是线性模型的输出lm(outcome ~ pred*factor, df)
但是,在某些情况下,我更喜欢将线条作为不同模型拟合的输出,例如lm(outcome ~ pred + factor, df),我可以使用以下内容:
fit <- lm(outcome ~ pred+factor, df)
predval <- expand.grid(
pred = …Run Code Online (Sandbox Code Playgroud) 我有一些数据,
calvarbyruno.1<-structure(list(Nominal = c(1, 3, 6, 10, 30, 50, 150, 250), Run = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("1", "2", "3"), class = "factor"),
PAR = c(1.25000000000000e-05, 0.000960333333333333, 0.00205833333333334,
0.00423333333333333, 0.0322333333333334, 0.614433333333334,
1.24333333333333, 1.86333333333333), PredLin = c(-0.0119152187070942,
0.00375925114245899, 0.0272709559167888, 0.0586198956158952,
0.215364594111427, 0.372109292606959, 1.15583278508462, 1.93955627756228
), PredQuad = c(-0.0615895732702735, -0.0501563307416599,
-0.0330831368244257, -0.0104619953693943, 0.100190275883806,
0.20675348710041, 0.6782336426345, 1.04748729725370)), .Names = c("Nominal",
"Run", "PAR", "PredLin", "PredQuad"), row.names = c(NA, 8L), class = "data.frame")
calweight <- -2
Run Code Online (Sandbox Code Playgroud)
为此我创建了线性和二次lm模型
callin.1<-lm(PAR~Nominal,data=calvarbyruno.1,weight=Nominal^calweight)
calquad.1<-lm(PAR~Nominal+I(Nominal^2),data=calvarbyruno.1,weight=Nominal^calweight) …Run Code Online (Sandbox Code Playgroud)