我有非常大的表(3000万行),我想加载为R中的数据帧 read.table()有很多方便的功能,但似乎实现中有很多逻辑会减慢速度.在我的情况下,我假设我提前知道列的类型,表不包含任何列标题或行名称,并且没有任何我必须担心的病态字符.
我知道在表格中阅读作为列表使用scan()可能非常快,例如:
datalist <- scan('myfile',sep='\t',list(url='',popularity=0,mintime=0,maxtime=0)))
Run Code Online (Sandbox Code Playgroud)
但是我将此转换为数据帧的一些尝试似乎将上述性能降低了6倍:
df <- as.data.frame(scan('myfile',sep='\t',list(url='',popularity=0,mintime=0,maxtime=0))))
Run Code Online (Sandbox Code Playgroud)
有没有更好的方法呢?或者很可能完全不同的方法来解决问题?
我有一些R脚本,我必须尽快在R中加载几个数据帧.这非常重要,因为读取数据是程序中最慢的部分.例如:从不同的数据帧绘图.我以sav(SPSS)格式获取数据,但我可以将其转换为建议的任何格式.不幸的是,合并数据帧不是一个选项.
什么是加载数据的最快方法?我在考虑以下几点:
read.spss.attr变量的任何自定义值(例如来自Spss导入文件的variable.labels)吗?或者这应该在一个单独的表中完成?欢迎任何其他想法.感谢您提前提出的每一个建议!
我根据你给出的答案在下面做了一个小实验,并且还添加了(24/01/2011)一个非常"hackish"但非常快速的解决方案,只从一个特殊的二进制文件中加载几个变量/列.后者似乎是我现在能想象的最快的方法,这就是为什么我编写了一个名为save的小包来处理这个功能(05/03/2011:ver.0.3).该套餐正在"重"开发,欢迎任何推荐!
在microbenchmark软件包的帮助下,我将很快发布一个具有准确基准测试结果的小插图.