我正在读一本书,作者说这if( a < 901 )比书更快if( a <= 900 ).
与此简单示例不完全相同,但循环复杂代码略有性能变化.我想这必须对生成的机器代码做一些事情,以防它甚至是真的.
LOOP(英特尔参考手动输入)递减ecx/rcx,然后如果非零则跳转.这很慢,但是英特尔不能廉价地把它变得很快吗? dec/jnz已经将宏观融合成 Sandybridge家族的一个 uop; 唯一的区别是设置标志.
loop关于各种微体系结构,来自Agner Fog的说明表:
Bulldozer-family/Ryzen:1 m-op(与宏观融合测试和分支相同,或者jecxz)
P4:4次(相同jecxz)
loope/ loopne).吞吐量= 4c(loop)或7c(loope/ne).loope/ loopne). 吞吐量=每5个循环一个,这是将循环计数器保留在内存中的瓶颈!jecxz只有2 uops,吞吐量与普通吞吐量相同jcc难道解码器不能像lea rcx, [rcx-1]/ 那样解码jrcxz吗?这将是3 uops.至少那是没有地址大小前缀的情况,否则它必须使用ecx和截断RIP,EIP如果跳转; 也许奇怪的地址大小选择控制减量的宽度解释了许多uops?
或者更好,只需将其解码为不设置标志的融合分支和分支? dec ecx …
来自Ira Baxter回答,为什么INC和DEC指令不会影响进位标志(CF)?
大多数情况下,我远离
INC而DEC现在,因为他们做的部分条件代码更新,这样就可以在管道中引起滑稽的摊位,和ADD/SUB没有.因此,无关紧要(大多数地方),我使用ADD/SUB避免失速.我使用INC/DEC仅在保持代码较小的情况下,例如,适合高速缓存行,其中一个或两个指令的大小产生足够的差异.这可能是毫无意义的纳米[字面意思!] - 优化,但我在编码习惯上相当老派.
我想问一下为什么它会导致管道中的停顿,而添加不会?毕竟,无论是ADD和INC更新标志寄存器.唯一的区别是INC不更新CF.但为什么重要呢?
当试图理解汇编(启用编译器优化)时,我看到这种行为:
这样一个非常基本的循环
outside_loop;
while (condition) {
statements;
}
Run Code Online (Sandbox Code Playgroud)
经常被编译成(伪代码)
; outside_loop
jmp loop_condition ; unconditional
loop_start:
loop_statements
loop_condition:
condition_check
jmp_if_true loop_start
; outside_loop
Run Code Online (Sandbox Code Playgroud)
但是,如果未打开优化,则会编译为通常可理解的代码:
loop_condition:
condition_check
jmp_if_false loop_end
loop_statements
jmp loop_condition ; unconditional
loop_end:
Run Code Online (Sandbox Code Playgroud)
根据我的理解,编译后的代码更像是这样的:
goto condition;
do {
statements;
condition:
}
while (condition_check);
Run Code Online (Sandbox Code Playgroud)
我看不到巨大的性能提升或代码可读性提升,为什么经常出现这种情况呢?是否有此循环样式的名称,例如"尾随条件检查"?
我一直看到人们声称MOV指令可以在x86中免费,因为寄存器重命名.
对于我的生活,我无法在一个测试用例中验证这一点.每个测试用例我尝试揭穿它.
例如,这是我用Visual C++编译的代码:
#include <limits.h>
#include <stdio.h>
#include <time.h>
int main(void)
{
unsigned int k, l, j;
clock_t tstart = clock();
for (k = 0, j = 0, l = 0; j < UINT_MAX; ++j)
{
++k;
k = j; // <-- comment out this line to remove the MOV instruction
l += j;
}
fprintf(stderr, "%d ms\n", (int)((clock() - tstart) * 1000 / CLOCKS_PER_SEC));
fflush(stderr);
return (int)(k + j + l);
}
Run Code Online (Sandbox Code Playgroud)
这为循环生成以下汇编代码(随意生成这个你想要的;你显然不需要Visual C++):
LOOP:
add edi,esi
mov …Run Code Online (Sandbox Code Playgroud) 我在Delphi中编写一个简单的BigInteger类型.它主要由TLimb的动态数组组成,其中TLimb是32位无符号整数,32位大小字段,它还保存BigInteger的符号位.
要添加两个BigIntegers,我创建一个适当大小的新BigInteger然后,在一些簿记之后,调用以下过程,将三个指针传递给左右操作数和结果的数组的相应开始,以及左右肢的数量分别为.
普通代码:
class procedure BigInteger.PlainAdd(Left, Right, Result: PLimb; LSize, RSize: Integer);
asm
// EAX = Left, EDX = Right, ECX = Result
PUSH ESI
PUSH EDI
PUSH EBX
MOV ESI,EAX // Left
MOV EDI,EDX // Right
MOV EBX,ECX // Result
MOV ECX,RSize // Number of limbs at Left
MOV EDX,LSize // Number of limbs at Right
CMP EDX,ECX
JAE @SkipSwap
XCHG ECX,EDX // Left and LSize should be largest
XCHG ESI,EDI // so swap
@SkipSwap:
SUB EDX,ECX // …Run Code Online (Sandbox Code Playgroud) 根据英特尔®64和IA-32架构优化参考手册 B.4节("英特尔®微体系架构代码名称Sandy Bridge的性能调整技术"),B.4.5.2小节("协助"):
跨越两页的32字节AVX存储指令需要一个大约150个周期的辅助.
我正在使用YMM寄存器来复制小型固定大小的内存块,从32到128个字节,并且这些块在堆管理器中以16个字节对齐.该堆管理器之前使用过XMM寄存器movdqa,我想将其"升级"为YMM,而不将对齐从16字节更改为32字节.所以我正在使用vmovdqu ymm0, ymmword ptr [rcx],vmovdqu ymmword ptr [rdx], ymm0等等......
如果我正确理解了英特尔文档的页面大小,如果我在4K页面边界上进行32字节存储,那么我将获得150个周期的惩罚.
但由于这些块已经对齐了16个字节,因此我点击跨页面存储的可能性是16/4096 = 1/256.如果我们在统计上推断出,在每个32字节的存储上,我在Sandy Bridge上得到1/255*150(= 0.5859375)个周期惩罚.
这不是那么多,并且由于将对齐从16字节更改为32字节,因此检查对齐或内存浪费肯定比分支更便宜.
我有以下问题:
我的计算是否正确?
对齐AVX-256内存存储器是否值得为小型固定大小的内存复制例程(32-128字节)而烦恼,因为达到惩罚的可能性如此之低?
是否存在比Sandy Bridge更高的未对齐32字节存储损失的处理器 - 例如,AMD或其他英特尔微体系结构?
使用以下代码是否存在任何执行速度差异:
cmp al, 0
je done
Run Code Online (Sandbox Code Playgroud)
以下内容:
or al, al
jz done
Run Code Online (Sandbox Code Playgroud)
我知道JE和JZ指令是相同的,并且使用OR可以提供一个字节的大小改进.但是,我也关心代码速度.逻辑运算符似乎比SUB或CMP更快,但我只是想确定.这可能是规模和速度之间的权衡,或双赢(当然代码将更加不透明).
我正在寻找一些用于签名饱和64位加法的C代码,它使用gcc优化器编译为高效的X86-64代码.便携式代码是理想的,尽管如果需要可以使用asm解决方案.
static const int64 kint64max = 0x7fffffffffffffffll;
static const int64 kint64min = 0x8000000000000000ll;
int64 signed_saturated_add(int64 x, int64 y) {
bool x_is_negative = (x & kint64min) != 0;
bool y_is_negative = (y & kint64min) != 0;
int64 sum = x+y;
bool sum_is_negative = (sum & kint64min) != 0;
if (x_is_negative != y_is_negative) return sum; // can't overflow
if (x_is_negative && !sum_is_negative) return kint64min;
if (!x_is_negative && sum_is_negative) return kint64max;
return sum;
}
Run Code Online (Sandbox Code Playgroud)
写入的函数产生具有多个分支的相当长的汇编输出.有关优化的提示吗?看起来它应该只用一个带有一些CMOV指令的ADD来实现,但我对这些东西有点生疏.