我想知道在稀疏的NumPy数组上使用.toarray()vs. 是否有任何差异(优点/缺点).todense().例如,
import scipy as sp
import numpy as np
sparse_m = sp.sparse.bsr_matrix(np.array([[1,0,0,0,1], [1,0,0,0,1]]))
%timeit sparse_m.toarray()
1000 loops, best of 3: 299 µs per loop
%timeit sparse_m.todense()
1000 loops, best of 3: 305 µs per loop
Run Code Online (Sandbox Code Playgroud) 我想知道当我使用分类器时是否,例如:
random_forest_bow = Pipeline([
('rf_tfidf',Feat_Selection. countV),
('rf_clf',RandomForestClassifier(n_estimators=300,n_jobs=3))
])
random_forest_ngram.fit(DataPrep.train['Text'],DataPrep.train['Label'])
predicted_rf_ngram = random_forest_ngram.predict(DataPrep.test_news['Text'])
np.mean(predicted_rf_ngram == DataPrep.test_news['Label'])
Run Code Online (Sandbox Code Playgroud)
我也在考虑模型中的其他功能。我定义 X 和 y 如下:
X=df[['Text','is_it_capital?', 'is_it_upper?', 'contains_num?']]
y=df['Label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=40)
df_train= pd.concat([X_train, y_train], axis=1)
df_test = pd.concat([X_test, y_test], axis=1)
countV = CountVectorizer()
train_count = countV.fit_transform(df.train['Text'].values)
Run Code Online (Sandbox Code Playgroud)
我的数据集如下所示
Text is_it_capital? is_it_upper? contains_num? Label
an example of text 0 0 0 0
ANOTHER example of text 1 1 0 1
What's happening?Let's talk at 5 1 0 1 1
Run Code Online (Sandbox Code Playgroud)
我还想将 …