有关类型化内存视图的Cython文档列出了三种分配给类型化内存视图的方法:
np.ndarray和cython.view.array.假设我没有从外部传入我的cython函数的数据,而是想分配内存并将其作为a返回np.ndarray,我选择了哪些选项?还假设该缓冲区的大小不是编译时常量,即我不能在堆栈上分配,但需要malloc选项1.
因此,3个选项可以解释如下:
from libc.stdlib cimport malloc, free
cimport numpy as np
from cython cimport view
np.import_array()
def memview_malloc(int N):
cdef int * m = <int *>malloc(N * sizeof(int))
cdef int[::1] b = <int[:N]>m
free(<void *>m)
def memview_ndarray(int N):
cdef int[::1] b = np.empty(N, dtype=np.int32)
def memview_cyarray(int N):
cdef int[::1] b = view.array(shape=(N,), itemsize=sizeof(int), format="i")
Run Code Online (Sandbox Code Playgroud)
让我感到惊讶的是,在所有三种情况下,Cython为内存分配生成了大量代码,特别是调用__Pyx_PyObject_to_MemoryviewSlice_dc_int.这表明(我可能在这里错了,我对Cython内部工作的洞察力非常有限),它首先创建一个Python对象,然后将其"转换"到内存视图中,这似乎是不必要的开销.
一个简单的基准测试并未揭示三种方法之间存在很大差异,其中2是最薄弱的方法.
推荐三种方法中的哪一种?或者有更好的选择吗? …
我正在尝试构造一个python类型的矩阵int,一个64位有符号整数.
cdef matrix33():
return np.zeros((3,3),dtype=int)
cdef do_stuf(np.ndarray[int, ndim=2] matrix):
...
return some_value
def start():
print do_stuf(matrix33())
Run Code Online (Sandbox Code Playgroud)
它编译正确,但是当我运行它时,我不断收到此错误:
ValueError: Buffer dtype mismatch, expected 'int' but got 'long'
Run Code Online (Sandbox Code Playgroud)
我无法使用python long,但我不知道如何正确转换为64 int.
UPDATE
好.我很确定我正确地使用了Cython.我写的代码是在捕获go/atari go的游戏中进行minmax搜索.
到目前为止,最常被称为的功能是:
cdef isThere_greedy_move(np.ndarray[np.int64_t, ndim=2]board, int player):
cdef int i, j
for i in xrange(len(board)):
for j in xrange(len(board)):
if board[i,j] == 0:
board[i,j] = player
if player in score(board):
board[i,j] = 0
return True
board[i,j] = 0
return False
# main function of the scoring system.
# returns …Run Code Online (Sandbox Code Playgroud)