使用小R样本数据集和来自statsmodels的ANOVA示例,其中一个变量的自由度报告不同,并且F值结果也略有不同.也许他们的默认方法略有不同?我可以设置statsmodels来使用R的默认值吗?
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
##R code on R sample dataset
#> anova(with(ChickWeight, lm(weight ~ Time + Diet)))
#Analysis of Variance Table
#
#Response: weight
# Df Sum Sq Mean Sq F value Pr(>F)
#Time 1 2042344 2042344 1576.460 < 2.2e-16 ***
#Diet 3 129876 43292 33.417 < 2.2e-16 ***
#Residuals 573 742336 1296
#write.csv(file='ChickWeight.csv', x=ChickWeight, row.names=F)
cw = pd.read_csv('ChickWeight.csv')
cw_lm=ols('weight ~ Time + Diet', data=cw).fit()
print(sm.stats.anova_lm(cw_lm, typ=2))
# sum_sq …Run Code Online (Sandbox Code Playgroud) 基于这个问题在此处输入链接描述,我使用 statsmodels 在 python 中实现方差分析。我的数据在 Pandas DataFrame 中并且country是一个分类变量。
def anova(data):
mod = ols('C(country) ~ playerRank+playerGames', data=data).fit()
aov_table = sm.stats.anova_lm(mod, typ=2)
print aov_table
Run Code Online (Sandbox Code Playgroud)
当我使用上述功能时,它显示:
File "<ipython-input-32-e77ae8a55692>", line 1, in <module>
aov_table = sm.stats.anova_lm(mod, typ=2)
File "C:\ProgramData\Anaconda2\lib\site-packages\statsmodels\stats\anova.py", line 326, in anova_lm
return anova_single(model, **kwargs)
File "C:\ProgramData\Anaconda2\lib\site-packages\statsmodels\stats\anova.py", line 83, in anova_single
robust)
File "C:\ProgramData\Anaconda2\lib\site-packages\statsmodels\stats\anova.py", line 178, in anova2_lm_single
cov = _get_covariance(model, None)
File "C:\ProgramData\Anaconda2\lib\site-packages\statsmodels\stats\anova.py", line 15, in _get_covariance
return model.cov_params()
File "C:\ProgramData\Anaconda2\lib\site-packages\statsmodels\base\wrapper.py", line 95, in wrapper
obj = data.wrap_output(func(results, …Run Code Online (Sandbox Code Playgroud)