我有点词典,说:
>>> points={'a':(3,4), 'b':(1,2), 'c':(5,5), 'd':(3,3)}
Run Code Online (Sandbox Code Playgroud)
我想创建一个新的字典,其中包含x和y值小于5的所有点,即点'a','b'和'd'.
根据该书,每个字典都有items()函数,它返回一个(key, pair) 元组列表:
>>> points.items()
[('a', (3, 4)), ('c', (5, 5)), ('b', (1, 2)), ('d', (3, 3))]
Run Code Online (Sandbox Code Playgroud)
所以我写了这个:
>>> for item in [i for i in points.items() if i[1][0]<5 and i[1][1]<5]:
... points_small[item[0]]=item[1]
...
>>> points_small
{'a': (3, 4), 'b': (1, 2), 'd': (3, 3)}
Run Code Online (Sandbox Code Playgroud)
有更优雅的方式吗?我期待Python有一些超级棒的dictionary.filter(f)功能......
任何人都可以向我解释以下行为吗?
>>> import numpy as np
>>> {np.nan: 5}[np.nan]
5
>>> {float64(np.nan): 5}[float64(np.nan)]
KeyError: nan
Run Code Online (Sandbox Code Playgroud)
为什么它在第一种情况下起作用,而在第二种情况下不起作用?另外,我发现以下的DOES有效:
>>> a ={a: 5}[a]
float64(np.nan)
Run Code Online (Sandbox Code Playgroud) 我有一些带有NaNs的pandas DataFrame.像这样:
import pandas as pd
import numpy as np
raw_data={'A':{1:2,2:3,3:4},'B':{1:np.nan,2:44,3:np.nan}}
data=pd.DataFrame(raw_data)
>>> data
A B
1 2 NaN
2 3 44
3 4 NaN
Run Code Online (Sandbox Code Playgroud)
现在我想用它制作一个字典,同时删除NaN.结果应如下所示:
{'A': {1: 2, 2: 3, 3: 4}, 'B': {2: 44.0}}
Run Code Online (Sandbox Code Playgroud)
但是使用pandas to_dict函数给我一个这样的结果:
>>> data.to_dict()
{'A': {1: 2, 2: 3, 3: 4}, 'B': {1: nan, 2: 44.0, 3: nan}}
Run Code Online (Sandbox Code Playgroud)
那么如何从DataFrame中制作一个字典并摆脱NaN?
我有一个大型稀疏数据框,sdf主要包含NaN在其中。当我使用sdf.to_dict()它时,它会输出该矩阵的密集版本,其中null填充了所有值。我如何省略这些NaN条目,并且只有输出条目对字典有价值?
例如,sdf是:
2018-02-02 2018-02-03
23:58:36 NaN NaN
23:58:37 1.0 NaN
23:58:40 NaN NaN
23:58:41 NaN NaN
23:58:42 NaN NaN
23:58:43 NaN NaN
23:58:48 NaN NaN
23:58:49 NaN NaN
23:58:50 NaN NaN
23:58:52 NaN 1.0
23:58:59 NaN NaN
23:59:00 NaN NaN
23:59:01 NaN NaN
23:59:05 NaN NaN
23:59:07 NaN NaN
Run Code Online (Sandbox Code Playgroud)
stf.to_dict()会给出:
{'2018-02-02': {'23:58:36': nan, '23:58:37': 1.0, '23:58:40':
nan, '23:58:41': nan, '23:58:42': nan, '23:58:43': nan,
'23:58:48': nan, '23:58:49': nan, …Run Code Online (Sandbox Code Playgroud)