我可以在单个系列条形图上绘制误差条,如下所示:
import pandas as pd
df = pd.DataFrame([[4,6,1,3], [5,7,5,2]], columns = ['mean1', 'mean2', 'std1', 'std2'], index=['A', 'B'])
print(df)
mean1 mean2 std1 std2
A 4 6 1 3
B 5 7 5 2
df['mean1'].plot(kind='bar', yerr=df['std1'], alpha = 0.5,error_kw=dict(ecolor='k'))
Run Code Online (Sandbox Code Playgroud)
正如预期的那样,索引A的平均值与同一索引的标准偏差配对,误差条显示该值的+/-.
但是,当我尝试在同一个图中同时绘制'mean1'和'mean2'时,我不能以相同的方式使用标准偏差:
df[['mean1', 'mean2']].plot(kind='bar', yerr=df[['std1', 'std2']], alpha = 0.5,error_kw=dict(ecolor='k'))
Traceback (most recent call last):
File "<ipython-input-587-23614d88a3c5>", line 1, in <module>
df[['mean1', 'mean2']].plot(kind='bar', yerr=df[['std1', 'std2']], alpha = 0.5,error_kw=dict(ecolor='k'))
File "C:\Users\name\Dropbox\Tools\WinPython-64bit-2.7.6.2\python-2.7.6.amd64\lib\site-packages\pandas\tools\plotting.py", line 1705, in plot_frame
plot_obj.generate()
File "C:\Users\name\Dropbox\Tools\WinPython-64bit-2.7.6.2\python-2.7.6.amd64\lib\site-packages\pandas\tools\plotting.py", line 878, in generate
self._make_plot()
File "C:\Users\name\Dropbox\Tools\WinPython-64bit-2.7.6.2\python-2.7.6.amd64\lib\site-packages\pandas\tools\plotting.py", …
Run Code Online (Sandbox Code Playgroud) 根据对此问题的接受答案,我能够为自己的数据重现相同的结果.但是,我需要绘制不对称误差条.
dfdict = {'ID': ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D'],
'quarter': ['2015 2Q', '2016 1Q', '2015 2Q', '2016 1Q', '2015 2Q',
'2016 1Q', '2015 2Q', '2016 1Q'],
'Percent': [0.851789, 0.333333, 0.355240, 0.167224, 1.533220,
0.333333, 0.170358, 0.000000],
'AgrCoullLower': [ 0.378046, 0.057962, 0.061850, -0.027515,
0.866025, 0.057962, -0.028012, -0.092614],
'AgrCoullUpper': [1.776511, 1.054612, 1.123492, 0.810851,
2.645141, 1.054612, 0.825960, 0.541513]}
df = pd.DataFrame(dfdict)
df
ID quarter Percent AgrCoullLower AgrCoullUpper
0 A 2015 2Q 0.851789 0.378046 1.776511
1 A 2016 …
Run Code Online (Sandbox Code Playgroud)