我正在尝试使用LAG函数计算BigQuery中的28天移动总和.
这个问题的最佳答案
来自Felipe Hoffa表示您可以使用LAG功能.一个例子是:
SELECT
spend + spend_lagged_1day + spend_lagged_2day + spend_lagged_3day + ... + spend_lagged_27day as spend_28_day_sum,
user,
date
FROM (
SELECT spend,
LAG(spend, 1) OVER (PARTITION BY user ORDER BY date) spend_lagged_1day,
LAG(spend, 2) OVER (PARTITION BY user ORDER BY date) spend_lagged_2day,
LAG(spend, 3) OVER (PARTITION BY user ORDER BY date) spend_lagged_3day,
...
LAG(spend, 28) OVER (PARTITION BY user ORDER BY date) spend_lagged_day,
user,
date
FROM user_spend
)
Run Code Online (Sandbox Code Playgroud)
有没有办法做到这一点,而不必写出28行SQL!
给出Google BigQuery中的表格:
User Timestamp
A TIMESTAMP(12/05/2015 12:05:01.8023)
B TIMESTAMP(9/29/2015 12:15:01.0323)
B TIMESTAMP(9/29/2015 13:05:01.0233)
A TIMESTAMP(9/29/2015 14:05:01.0432)
C TIMESTAMP(8/15/2015 5:05:01.0000)
B TIMESTAMP(9/29/2015 14:06:01.0233)
A TIMESTAMP(9/29/2015 14:06:01.0432)
Run Code Online (Sandbox Code Playgroud)
有一种简单的计算方法:
User Maximum_Number_of_Events_this_User_Had_in_One_Hour
A 2
B 3
C 1
Run Code Online (Sandbox Code Playgroud)
一小时的时间窗口是一个参数?
我试着通过构建LAG和分区函数来解决这两个问题:
用于28天滑动窗口聚合的BigQuery SQL(无需编写28行SQL)
但是发现那些帖子太不相似,因为我没有找到每个时间窗口的人数,而是在一个时间窗口内找到每个人的最大事件数.