我从这样的输入数据开始
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
Run Code Online (Sandbox Code Playgroud)
打印时显示如下:
City Name
0 Seattle Alice
1 Seattle Bob
2 Portland Mallory
3 Seattle Mallory
4 Seattle Bob
5 Portland Mallory
Run Code Online (Sandbox Code Playgroud)
分组很简单:
g1 = df1.groupby( [ "Name", "City"] ).count()
Run Code Online (Sandbox Code Playgroud)
和打印产生一个GroupBy对象:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Seattle 1 1
Run Code Online (Sandbox Code Playgroud)
但我最终想要的是另一个包含GroupBy对象中所有行的DataFrame对象.换句话说,我希望得到以下结果:
City Name
Name …Run Code Online (Sandbox Code Playgroud) 我是 Pandas 新手,我想知道在下面的示例中我做错了什么。
我在这里找到了一个示例,解释了如何在应用组而不是系列后获取数据框。
df1 = pd.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Baires", "Caracas", "Baires", "Caracas"] })
df1['size'] = df1.groupby(['City']).transform(np.size)
df1.dtypes #Why is size an object? shouldn't it be an integer?
df1[['size']] = df1[['size']].astype(int) #convert to integer
df1['avera'] = df1.groupby(['City'])['size'].transform(np.mean) #group by again
Run Code Online (Sandbox Code Playgroud)
基本上,我想将相同的转换应用于我现在正在处理的巨大数据集,但我收到一条错误消息:
budgetbid['meanpb']=budgetbid.groupby(['jobid'])['probudget'].transform(np.mean) #can't upload this data for the sake of explanation
ValueError: Length mismatch: Expected axis has 5564 elements, new values have 78421 elements
Run Code Online (Sandbox Code Playgroud)
因此,我的问题是: