相关疑难解决方法(0)

使用熊猫的"大数据"工作流程

在学习大熊猫的过程中,我试图解决这个问题的答案已有好几个月了.我使用SAS进行日常工作,这非常适合它的核心支持.然而,由于其他许多原因,SAS作为一款软件非常糟糕.

有一天,我希望用python和pandas替换我对SAS的使用,但我目前缺乏大型数据集的核心工作流程.我不是在谈论需要分布式网络的"大数据",而是说文件太大而无法容纳在内存中,但又足够小以适应硬盘驱动器.

我的第一个想法是用于HDFStore在磁盘上保存大型数据集,并仅将我需要的部分拉入数据帧进行分析.其他人提到MongoDB是一种更容易使用的替代品.我的问题是:

有哪些最佳实践工作流程可用于完成以下任务:

  1. 将平面文件加载到永久的磁盘数据库结构中
  2. 查询该数据库以检索数据以提供给pandas数据结构
  3. 在操作pandas中的片段后更新数据库

真实世界的例子将非常受欢迎,尤其是那些在"大数据"上使用熊猫的人.

编辑 - 我希望如何工作的示例:

  1. 迭代导入大型平面文件并将其存储在永久的磁盘数据库结构中.这些文件通常太大而无法放入内存中.
  2. 为了使用Pandas,我想读取这些数据的子集(通常一次只有几列),它们可以适合内存.
  3. 我将通过对所选列执行各种操作来创建新列.
  4. 然后我必须将这些新列附加到数据库结构中.

我正在尝试找到执行这些步骤的最佳实践方法.阅读关于pandas和pytables的链接似乎附加一个新列可能是个问题.

编辑 - 特别回应杰夫的问题:

  1. 我正在构建消费者信用风险模型.数据种类包括电话,SSN和地址特征; 财产价值; 犯罪记录,破产等贬损信息......我每天使用的数据集平均有近1,000到2,000个字段的混合数据类型:数字和字符数据的连续,名义和序数变量.我很少附加行,但我会执行许多创建新列的操作.
  2. 典型操作涉及使用条件逻辑将多个列组合到新的复合列中.例如,if var1 > 2 then newvar = 'A' elif var2 = 4 then newvar = 'B'.这些操作的结果是我的数据集中每条记录的新列.
  3. 最后,我想将这些新列附加到磁盘上的数据结构中.我将重复第2步,使用交叉表和描述性统计数据探索数据,试图找到有趣,直观的模型关系.
  4. 典型的项目文件通常约为1GB.文件被组织成一种行,其中一行包括消费者数据的记录.每行对每条记录都有相同的列数.情况总是如此.
  5. 在创建新列时,我很少会按行进行子集化.但是,在创建报告或生成描述性统计信息时,对行进行子集化非常常见.例如,我可能想为特定的业务线创建一个简单的频率,比如零售信用卡.要做到这一点,除了我要报告的列之外,我只会选择那些业务线=零售的记录.但是,在创建新列时,我会提取所有数据行,只提取操作所需的列.
  6. 建模过程要求我分析每一列,寻找与某些结果变量的有趣关系,并创建描述这些关系的新化合物列.我探索的列通常以小集合完成.例如,我将专注于一组20个列,只处理属性值并观察它们与贷款违约的关系.一旦探索了这些并创建了新的列,我就转到另一组列,比如大学教育,然后重复这个过程.我正在做的是创建候选变量来解释我的数据和某些结果之间的关系.在这个过程的最后,我应用了一些学习技术,从这些复合列中创建一个方程式.

我很少会在数据集中添加行.我几乎总是会创建新的列(统计/机器学习用语中的变量或特征).

python hdf5 large-data mongodb pandas

913
推荐指数
14
解决办法
27万
查看次数

在pandas MultiIndex DataFrame中选择行

目标和动机

(x, y)API已经日益普及,多年来,然而,没有关于它的一切是完全理解在结构方面,工作和相关的操作.

一个重要的操作是过滤.过滤是一种常见的要求,但用例是多种多样的.因此,某些方法和功能将比其他用例更适用于某些用例.

总之,本文的目的是触及一些常见的过滤问题和用例,演示解决这些问题的各种不同方法,并讨论它们的适用性.本文试图解决的一些高级问题是

  • 基于单个值/标签切片
  • 基于来自一个或多个级别的多个标签进行切片
  • 过滤布尔条件和表达式
  • 哪种方法适用于什么情况

这些问题已分解为6个具体问题,如下所列.为简单起见,以下设置中的示例DataFrame仅具有两个级别,并且没有重复的索引键.提出问题的大多数解决方案可以推广到N级.

本文不会介绍如何创建MultiIndexes,如何对它们执行赋值操作,或任何与性能相关的讨论(这些是另一个时间的单独主题).


问题

问题1-6将在上下文中询问下面的设置.

mux = pd.MultiIndex.from_arrays([
    list('aaaabbbbbccddddd'),
    list('tuvwtuvwtuvwtuvw')
], names=['one', 'two'])

df = pd.DataFrame({'col': np.arange(len(mux))}, mux)

         col
one two     
a   t      0
    u      1
    v      2
    w      3
b   t      4
    u      5
    v      6
    w      7
    t      8
c   u      9
    v     10
d   w     11
    t     12
    u     13
    v     14
    w     15
Run Code Online (Sandbox Code Playgroud)

问题1:选择单个项目
如何在"1"级中选择"a"的行?

         col
one two     
a   t      0 …
Run Code Online (Sandbox Code Playgroud)

python slice multi-index dataframe pandas

78
推荐指数
2
解决办法
1万
查看次数

使用pd.eval()在pandas中进行动态表达式评估

目标和动机

pd.eval并且eval是pandas API套件中功能强大但被低估的功能,它们的使用远未完全记录或理解.小心适量,eval并且engine可以极大地简化代码,提高性能,并成为创建动态工作流的强大工具.

这个规范QnA的目的是让用户更好地理解这些功能,讨论一些鲜为人知的功能,如何使用它们,以及如何最好地使用它们,以及清晰易懂的示例.这篇文章将讨论的两个主要议题是

  1. 了解parser,df2x在争论pd.eval,以及它们如何被用来计算表达式
  2. 了解之间的差eval,eval并且engine,当每个功能是合适的用于动态执行.

这篇文章不能替代文档(答案中的链接),所以请完成它!


我将以这样的方式构建一个问题,以便开启对所支持的各种功能的讨论parser.

给出两个DataFrame

np.random.seed(0)
df1 = pd.DataFrame(np.random.choice(10, (5, 4)), columns=list('ABCD'))
df2 = pd.DataFrame(np.random.choice(10, (5, 4)), columns=list('ABCD'))

df1
   A  B  C  D
0  5  0  3  3
1  7  9  3  5
2  2  4  7  6
3  8  8  1  6
4  7  7  8  1

df2
   A  B  C …
Run Code Online (Sandbox Code Playgroud)

python eval dataframe pandas

45
推荐指数
2
解决办法
7156
查看次数

如何使用另一个MultiIndex切割一个MultiIndex DataFrame

我有一个包含3个MultiIndex级别的pandas数据帧.我试图根据对应于两个级别的值列表拉出此数据帧的行.

我有这样的事情:

ix = pd.MultiIndex.from_product([[1, 2, 3], ['foo', 'bar'], ['baz', 'can']], names=['a', 'b', 'c'])
data = np.arange(len(ix))
df = pd.DataFrame(data, index=ix, columns=['hi'])
print(df)

           hi
a b   c      
1 foo baz   0
      can   1
  bar baz   2
      can   3
2 foo baz   4
      can   5
  bar baz   6
      can   7
3 foo baz   8
      can   9
  bar baz  10
      can  11
Run Code Online (Sandbox Code Playgroud)

现在我想要获取索引级别'b'和'c'在此索引中的所有行:

ix_use = pd.MultiIndex.from_tuples([('foo', 'can'), ('bar', 'baz')], names=['b', 'c'])
Run Code Online (Sandbox Code Playgroud)

即值hi具有('foo', 'can')('bar', 'baz')在水平b和 …

python multi-index dataframe pandas

17
推荐指数
1
解决办法
9032
查看次数

使用pd.read_clipboard复制MultiIndex数据帧?

给定这样的数据帧:

          C
A   B      
1.1 111  20
    222  31
3.3 222  24
    333  65
5.5 333  22
6.6 777  74 
Run Code Online (Sandbox Code Playgroud)

如何在使用中阅读pd.read_clipboard?我试过这个:

df = pd.read_clipboard(index_col=[0, 1])
Run Code Online (Sandbox Code Playgroud)

但它抛出一个错误:

ParserError: Error tokenizing data. C error: Expected 2 fields in line 3, saw 3
Run Code Online (Sandbox Code Playgroud)

我怎样才能解决这个问题?


其他pd.read_clipboard问题:

python clipboard dataframe pandas

14
推荐指数
1
解决办法
626
查看次数

通过 MultiIndex 选择 Pandas

关于通过 MultiIndex 选择行的问题。

df:

              colA   ColB

   A1   B1   1  ca1  cb1
             2  ca2  cb2
        B2   1  ca3  cb3
             2  ca4  cb4 
   A2   B1   1  ca5  cb5
             2  ca6  cb6
        B2   1  ca7  cb7
             2  ca8  cb8
Run Code Online (Sandbox Code Playgroud)

我想从 A2/B1 中选择 colA,其中 MultiIndex levels(2) > 1。我分多个步骤进行:

df1=df.loc[A2,[B7],:,]  
Run Code Online (Sandbox Code Playgroud)

出于某种原因,我必须在括号中显示级别(1)

df1.index = x1.index.droplevel(0)

df1.index = x1.index.droplevel(0)

df1.loc[1:,'colA']
Run Code Online (Sandbox Code Playgroud)

我知道这太多了,但我不知道如何更简单地做到这一点。我能想到的方法都不想工作。

python multi-index dataframe pandas

3
推荐指数
2
解决办法
1585
查看次数

标签 统计

pandas ×6

python ×6

dataframe ×5

multi-index ×3

clipboard ×1

eval ×1

hdf5 ×1

large-data ×1

mongodb ×1

slice ×1