相关疑难解决方法(0)

使用numpy构建两个数组的所有组合的数组

我试图在6参数函数的参数空间上运行以研究它的数值行为,然后再尝试做任何复杂的事情,所以我正在寻找一种有效的方法来做到这一点.

给定6-dim numpy数组作为输入,我的函数采用浮点值.我最初尝试做的是:

首先,我创建了一个函数,它接受2个数组并生成一个数组,其中包含来自两个数组的所有值组合

from numpy import *
def comb(a,b):
    c = []
    for i in a:
        for j in b:
            c.append(r_[i,j])
    return c
Run Code Online (Sandbox Code Playgroud)

然后我习惯reduce()将它应用于相同数组的m个副本:

def combs(a,m):
    return reduce(comb,[a]*m)
Run Code Online (Sandbox Code Playgroud)

然后我评估我的功能如下:

values = combs(np.arange(0,1,0.1),6)
for val in values:
    print F(val)
Run Code Online (Sandbox Code Playgroud)

这有效,但它太慢了.我知道参数的空间很大,但这不应该太慢.在这个例子中我只抽取了10 6(一百万)个点,并且创建数组花了超过15秒values.

你知道用numpy做这个更有效的方法吗?

F如果有必要,我可以修改函数获取它的参数的方式.

python arrays numpy multidimensional-array

132
推荐指数
9
解决办法
10万
查看次数

Pandas groupby和Multiindex

在Pandas中有没有机会通过MultiIndex对数据进行分组?通过这个我的意思是传递给groupby函数不仅键,而是键和值预定义数据帧列?

a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object)
b = np.array(['one', 'one', 'two', 'one', 'two', 'two', 'two'], dtype=object)
c = np.array(['dull', 'shiny', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object)
df = pd.DataFrame([a, b, c]).T
df.columns = ['a', 'b', 'c']
df.groupby(['a', 'b', 'c']).apply(len)

a    b    c    
bar  one  dull     1
     two  dull     1
foo  one  dull     1
          shiny    1
     two  dull     1
          shiny    2
Run Code Online (Sandbox Code Playgroud)

但我真正想要的是以下内容:

mi = pd.MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], ['dull', 'shiny']],
                   labels=[[0, 0, 0, 0, 1, 1, …
Run Code Online (Sandbox Code Playgroud)

python pandas

5
推荐指数
1
解决办法
4460
查看次数

标签 统计

python ×2

arrays ×1

multidimensional-array ×1

numpy ×1

pandas ×1