我有一个分析代码,使用numpy进行一些繁重的数值运算.只是为了好奇,尝试用cython编译它几乎没有变化,然后我用循环为numpy部分重写它.
令我惊讶的是,基于循环的代码要快得多(8x).我不能发布完整的代码,但我把一个非常简单的无关计算放在一起,显示出类似的行为(虽然时间差异不是很大):
版本1(没有cython)
import numpy as np
def _process(array):
rows = array.shape[0]
cols = array.shape[1]
out = np.zeros((rows, cols))
for row in range(0, rows):
out[row, :] = np.sum(array - array[row, :], axis=0)
return out
def main():
data = np.load('data.npy')
out = _process(data)
np.save('vianumpy.npy', out)
Run Code Online (Sandbox Code Playgroud)
版本2(使用cython构建模块)
import cython
cimport cython
import numpy as np
cimport numpy as np
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cdef _process(np.ndarray[DTYPE_t, ndim=2] array):
cdef unsigned int rows = array.shape[0]
cdef unsigned int cols …Run Code Online (Sandbox Code Playgroud)