相关疑难解决方法(0)

在样条拟合1d数据中找到拐点

我有一些一维数据,并与样条拟合.然后我想在其中找到拐点(忽略鞍点).现在我通过在splev生成的很多值上使用scipy.signal.argrelmin(和argrelmax)来搜索其第一个派生的极值.

import scipy.interpolate
import scipy.optimize
import scipy.signal
import numpy as np
import matplotlib.pyplot as plt
import operator

y = [-1, 5, 6, 4, 2, 5, 8, 5, 1]
x = np.arange(0, len(y))
tck = scipy.interpolate.splrep(x, y, s=0)

print 'roots', scipy.interpolate.sproot(tck)
# output:
# [0.11381478]

xnew = np.arange(0, len(y), 0.01)
ynew = scipy.interpolate.splev(xnew, tck, der=0)

ynew_deriv = scipy.interpolate.splev(xnew, tck, der=1)

min_idxs = scipy.signal.argrelmin(ynew_deriv)
max_idxs = scipy.signal.argrelmax(ynew_deriv)
mins = zip(xnew[min_idxs].tolist(), ynew_deriv[min_idxs].tolist())
maxs = zip(xnew[max_idxs].tolist(), ynew_deriv[max_idxs].tolist())
inflection_points = sorted(mins + maxs, key=operator.itemgetter(0))

print …
Run Code Online (Sandbox Code Playgroud)

python numpy spline scipy

5
推荐指数
1
解决办法
3748
查看次数

标签 统计

numpy ×1

python ×1

scipy ×1

spline ×1