Pau*_*och 6 c# floating-point rounding
在C#中,我希望将双精度舍入到较低的精度,以便我可以将它们存储在关联数组中的不同大小的存储桶中.与通常的舍入不同,我想要舍入到一些重要的位.因此,大数字的绝对值会比小数字更改,但它们往往会按比例改变.因此,如果我想要舍入到10个二进制数字,我会找到十个最高有效位,并将所有低位都清零,可能会添加一个小数字进行舍入.
我更喜欢将"中途"数字四舍五入.
如果它是整数类型,这里可能是一个算法:
Run Code Online (Sandbox Code Playgroud)1. Find: zero-based index of the most significant binary digit set H. 2. Compute: B = H - P, where P is the number of significant digits of precision to round and B is the binary digit to start rounding, where B = 0 is the ones place, B = 1 is the twos place, etc. 3. Add: x = x + 2^B This will force a carry if necessary (we round halfway values up). 4. Zero out: x = x mod 2^(B+1). This clears the B place and all lower digits.
问题是找到找到最高位集的有效方法.如果我使用整数,那么找到MSB就会有很酷的攻击.如果我可以帮助它,我不想调用Round(Log2(x)).此功能将被调用数百万次.
注意:我已经阅读了这个问题:
它适用于C++.我正在使用C#.
更新:
这是我使用它时的代码(根据回答者提供的内容进行了修改):
/// <summary>
/// Round numbers to a specified number of significant binary digits.
///
/// For example, to 3 places, numbers from zero to seven are unchanged, because they only require 3 binary digits,
/// but larger numbers lose precision:
///
/// 8 1000 => 1000 8
/// 9 1001 => 1010 10
/// 10 1010 => 1010 10
/// 11 1011 => 1100 12
/// 12 1100 => 1100 12
/// 13 1101 => 1110 14
/// 14 1110 => 1110 14
/// 15 1111 =>10000 16
/// 16 10000 =>10000 16
///
/// This is different from rounding in that we are specifying the place where rounding occurs as the distance to the right
/// in binary digits from the highest bit set, not the distance to the left from the zero bit.
/// </summary>
/// <param name="d">Number to be rounded.</param>
/// <param name="digits">Number of binary digits of precision to preserve. </param>
public static double AdjustPrecision(this double d, int digits)
{
// TODO: Not sure if this will work for both normalized and denormalized doubles. Needs more research.
var shift = 53 - digits; // IEEE 754 doubles have 53 bits of significand, but one bit is "implied" and not stored.
ulong significandMask = (0xffffffffffffffffUL >> shift) << shift;
var local_d = d;
unsafe
{
// double -> fixed point (sorta)
ulong toLong = *(ulong*)(&local_d);
// mask off your least-sig bits
var modLong = toLong & significandMask;
// fixed point -> float (sorta)
local_d = *(double*)(&modLong);
}
return local_d;
}
Run Code Online (Sandbox Code Playgroud)
更新2:Dekker的算法
我从Dekker的算法中得出了这个,感谢另一位受访者.它舍入到最接近的值,而不是像上面的代码那样截断,它只使用安全代码:
private static double[] PowersOfTwoPlusOne;
static NumericalAlgorithms()
{
PowersOfTwoPlusOne = new double[54];
for (var i = 0; i < PowersOfTwoPlusOne.Length; i++)
{
if (i == 0)
PowersOfTwoPlusOne[i] = 1; // Special case.
else
{
long two_to_i_plus_one = (1L << i) + 1L;
PowersOfTwoPlusOne[i] = (double)two_to_i_plus_one;
}
}
}
public static double AdjustPrecisionSafely(this double d, int digits)
{
double t = d * PowersOfTwoPlusOne[53 - digits];
double adjusted = t - (t - d);
return adjusted;
}
Run Code Online (Sandbox Code Playgroud)
更新2:时间安排
我进行了测试,发现Dekker的算法比TWICE快得多!
测试中的呼叫数量:100,000,000
不安全时间= 1.922(秒)
安全时间= 0.799(秒)
Dekker的算法将浮点数分成高低部分.如果有效数据中有s位(IEEE 754 64位二进制中有53位),则*x0接收您请求的高s - b位,并*x1接收剩余的位,您可以丢弃这些位.在下面的代码中,Scale应该具有值2 b.如果b在编译时已知,例如常数43,则可以替换Scale为0x1p43.否则,你必须以某种方式产生2 b.
这需要圆到最近的模式.IEEE 754算术就足够了,但其他合理的算法也可以.它将关系变为偶数,这不是你要求的(向上绑定).这有必要吗?
这假定x * (Scale + 1)不会溢出.必须以双精度(不大于)精度评估操作.
void Split(double *x0, double *x1, double x)
{
double d = x * (Scale + 1);
double t = d - x;
*x0 = d - t;
*x1 = x - *x0;
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1935 次 |
| 最近记录: |