加权意味着按组和列

Mar*_*ler 4 for-loop r apply sapply

我希望按几个(实际上大约60个)列中的每一列获得加权平均值.这个问题非常类似于:刚刚提出的数据框中重复应用ave计算组意味着.

到目前为止,我已经提出了两种方法来获得加权平均值:

  1. sapply为每列使用单独的语句
  2. 在...中sapply发表声明for-loop

但是,我觉得必须有一种方法可以在apply语句中插入一个语句,sapply反之亦然,从而消除了for-loop.我尝试了许多排列而没有成功.我也看了看这个sweep功能.

这是我到目前为止的代码.

df <- read.table(text= "
          region    state  county  weights y1980  y1990  y2000
             1        1       1       10     100    200     50
             1        1       2        5      50    100    200
             1        1       3      120    1000    500    250
             1        1       4        2      25    100    400
             1        1       4       15     125    150    200

             2        2       1        1      10     50    150
             2        2       2       10      10     10    200
             2        2       2       40      40    100     30
             2        2       3       20     100    100     10
", header=TRUE, na.strings=NA)

# add a group variable to the data set

group <- paste(df$region, '_', df$state, '_', df$county, sep = "")
df    <- data.frame(group, df)

# obtain weighted averages for y1980, y1990 and y2000 
# one column at a time using one sapply per column

sapply(split(df, df$group), function(x) weighted.mean(x$y1980, w = x$weights))
sapply(split(df, df$group), function(x) weighted.mean(x$y1990, w = x$weights))
sapply(split(df, df$group), function(x) weighted.mean(x$y2000, w = x$weights))

# obtain weighted average for y1980, y1990 and y2000
# one column at a time using a for-loop

y <- matrix(NA, nrow=7, ncol=3)
group.b <- df[!duplicated(df$group), 1]

for(i in 6:8) { 

    y[,(i-5)] <- sapply(split(df[,c(1:5,i)], df$group), function(x) weighted.mean(x[,6], w = x$weights))

}

# add weighted averages to the original data set

y2 <- data.frame(group.b, y)
colnames(y2) <- c('group','ave1980','ave1990','ave2000')
y2

y3 <- merge(df, y2, by=c('group'), all = TRUE)
y3
Run Code Online (Sandbox Code Playgroud)

对不起我最近的所有问题,谢谢你的任何建议.

编辑显示 y3

  group region state county weights y1980 y1990 y2000   ave1980  ave1990  ave2000
1 1_1_1      1     1      1      10   100   200    50  100.0000 200.0000  50.0000
2 1_1_2      1     1      2       5    50   100   200   50.0000 100.0000 200.0000
3 1_1_3      1     1      3     120  1000   500   250 1000.0000 500.0000 250.0000
4 1_1_4      1     1      4       2    25   100   400  113.2353 144.1176 223.5294
5 1_1_4      1     1      4      15   125   150   200  113.2353 144.1176 223.5294
6 2_2_1      2     2      1       1    10    50   150   10.0000  50.0000 150.0000
7 2_2_2      2     2      2      10    10    10   200   34.0000  82.0000  64.0000
8 2_2_2      2     2      2      40    40   100    30   34.0000  82.0000  64.0000
9 2_2_3      2     2      3      20   100   100    10  100.0000 100.0000  10.0000
Run Code Online (Sandbox Code Playgroud)

Rol*_*and 5

我建议使用package data.table:

library(data.table)
dt <- as.data.table(df)
dt2 <- dt[,lapply(.SD,weighted.mean,w=weights),by=list(region,state,county)]
print(dt2)

   region state county   weights     y1980    y1990    y2000
1:      1     1      1  10.00000  100.0000 200.0000  50.0000
2:      1     1      2   5.00000   50.0000 100.0000 200.0000
3:      1     1      3 120.00000 1000.0000 500.0000 250.0000
4:      1     1      4  13.47059  113.2353 144.1176 223.5294
5:      2     2      1   1.00000   10.0000  50.0000 150.0000
6:      2     2      2  34.00000   34.0000  82.0000  64.0000
7:      2     2      3  20.00000  100.0000 100.0000  10.0000
Run Code Online (Sandbox Code Playgroud)

如果你想要你可以merge使用原始data.table事后:

merge(dt,dt2,by=c("region","state","county"))

   region state county weights.x y1980.x y1990.x y2000.x weights.y   y1980.y  y1990.y  y2000.y
1:      1     1      1        10     100     200      50  10.00000  100.0000 200.0000  50.0000
2:      1     1      2         5      50     100     200   5.00000   50.0000 100.0000 200.0000
3:      1     1      3       120    1000     500     250 120.00000 1000.0000 500.0000 250.0000
4:      1     1      4         2      25     100     400  13.47059  113.2353 144.1176 223.5294
5:      1     1      4        15     125     150     200  13.47059  113.2353 144.1176 223.5294
6:      2     2      1         1      10      50     150   1.00000   10.0000  50.0000 150.0000
7:      2     2      2        10      10      10     200  34.00000   34.0000  82.0000  64.0000
8:      2     2      2        40      40     100      30  34.00000   34.0000  82.0000  64.0000
9:      2     2      3        20     100     100      10  20.00000  100.0000 100.0000  10.0000
Run Code Online (Sandbox Code Playgroud)

  • @FooBar使用`.SDcols`.参见`help("data.table")`. (2认同)