Kje*_*and 7 r cox-regression r-mice
I have a dataset with survival data and a few missing covariates. I've successfully applied the mice-package to imputate m-numbers of datasets using the mice() function, created an imputationList object and applied a Cox PH model on each m-dataset. Subsequently I'ved pooled the results using the MIcombine() function. This leads to my question:
How can I get a p-value for the pooled estimates for each covariate? Are they hidden somewhere within the MIcombine object?
我知道 p 值并不是一切,但报告估计值和置信区间而没有相应的 p 值对我来说似乎很奇怪。我能够计算一个近似值。使用例如Altman 提供的公式来自置信区间的 p 值,但这似乎过于复杂。我四处寻找答案,但我什至找不到任何人提到这个问题。我是否忽略了一些明显的东西?
例如:
library(survival)
library(mice)
library(mitools)
test1 <- as.data.frame(list(time=c(4,3,1,1,2,2,3,5,2,4,5,1),
status=c(1,1,1,0,1,1,0,0,1,1,0,0),
x=c(0,2,1,1,NA,NA,0,1,1,2,0,1),
sex=c(0,0,0,0,1,1,1,1,NA,1,0,0)))
dat <- mice(test1,m=10)
mit <- imputationList(lapply(1:10,complete,x=dat))
models <- with(mit,coxph(Surv(time, status) ~ x + strata(sex)))
summary(MIcombine(models))
Run Code Online (Sandbox Code Playgroud)
我试图对 MIcombine 对象的结构进行排序,但到目前为止还没有找到 p 值的运气。
小智 1
models <- with(dat,coxph(Surv(time, status) ~ x + strata(sex)))
summary(pool(models))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3650 次 |
| 最近记录: |