Hoo*_*ked 14 python math numpy scientific-computing scipy
动机:我有一个多维积分,为了完整性我在下面再现.它来自于存在显着各向异性时第二个维里系数的计算:

这里W是所有变量的函数.这是一个已知函数,我可以为其定义一个python函数.
编程问题:如何scipy集成此表达式?我想把两个三重四边形链接scipy.integrate.tplquad在一起,但我担心性能和准确性.是否有更高维的积分器scipy,可以处理任意数量的嵌套积分?如果没有,最好的方法是什么?
Jon*_*rsi 22
对于像这样的高维积分,monte carlo方法通常是一种有用的技术 - 它们作为函数评估数的倒数平方根收敛于答案,这对于更高维度更好,那么你通常会得到更多相当复杂的自适应方法(除非你知道关于你的被积函数的一些非常具体的东西 - 可以被利用的对称性等)
该mcint包执行蒙特卡洛积分:用不平凡的运行W是仍然积,所以我们知道我们得到的答案(请注意,我截短R设定为在[0,1); 你将不得不做一些日志变换或某种东西,以使半无界域成为大多数数值积分器易处理的东西):
import mcint
import random
import math
def w(r, theta, phi, alpha, beta, gamma):
return(-math.log(theta * beta))
def integrand(x):
r = x[0]
theta = x[1]
alpha = x[2]
beta = x[3]
gamma = x[4]
phi = x[5]
k = 1.
T = 1.
ww = w(r, theta, phi, alpha, beta, gamma)
return (math.exp(-ww/(k*T)) - 1.)*r*r*math.sin(beta)*math.sin(theta)
def sampler():
while True:
r = random.uniform(0.,1.)
theta = random.uniform(0.,2.*math.pi)
alpha = random.uniform(0.,2.*math.pi)
beta = random.uniform(0.,2.*math.pi)
gamma = random.uniform(0.,2.*math.pi)
phi = random.uniform(0.,math.pi)
yield (r, theta, alpha, beta, gamma, phi)
domainsize = math.pow(2*math.pi,4)*math.pi*1
expected = 16*math.pow(math.pi,5)/3.
for nmc in [1000, 10000, 100000, 1000000, 10000000, 100000000]:
random.seed(1)
result, error = mcint.integrate(integrand, sampler(), measure=domainsize, n=nmc)
diff = abs(result - expected)
print "Using n = ", nmc
print "Result = ", result, "estimated error = ", error
print "Known result = ", expected, " error = ", diff, " = ", 100.*diff/expected, "%"
print " "
Run Code Online (Sandbox Code Playgroud)
跑步给
Using n = 1000
Result = 1654.19633236 estimated error = 399.360391622
Known result = 1632.10498552 error = 22.0913468345 = 1.35354937522 %
Using n = 10000
Result = 1634.88583778 estimated error = 128.824988953
Known result = 1632.10498552 error = 2.78085225405 = 0.170384397984 %
Using n = 100000
Result = 1646.72936 estimated error = 41.3384733174
Known result = 1632.10498552 error = 14.6243744747 = 0.8960437352 %
Using n = 1000000
Result = 1640.67189792 estimated error = 13.0282663003
Known result = 1632.10498552 error = 8.56691239895 = 0.524899591322 %
Using n = 10000000
Result = 1635.52135088 estimated error = 4.12131562436
Known result = 1632.10498552 error = 3.41636536248 = 0.209322647304 %
Using n = 100000000
Result = 1631.5982799 estimated error = 1.30214644297
Known result = 1632.10498552 error = 0.506705620147 = 0.0310461413109 %
Run Code Online (Sandbox Code Playgroud)
你可以通过矢量化随机数生成等来大大提高速度.
当然,您可以按照建议链接三重积分:
import numpy
import scipy.integrate
import math
def w(r, theta, phi, alpha, beta, gamma):
return(-math.log(theta * beta))
def integrand(phi, alpha, gamma, r, theta, beta):
ww = w(r, theta, phi, alpha, beta, gamma)
k = 1.
T = 1.
return (math.exp(-ww/(k*T)) - 1.)*r*r*math.sin(beta)*math.sin(theta)
# limits of integration
def zero(x, y=0):
return 0.
def one(x, y=0):
return 1.
def pi(x, y=0):
return math.pi
def twopi(x, y=0):
return 2.*math.pi
# integrate over phi [0, Pi), alpha [0, 2 Pi), gamma [0, 2 Pi)
def secondIntegrals(r, theta, beta):
res, err = scipy.integrate.tplquad(integrand, 0., 2.*math.pi, zero, twopi, zero, pi, args=(r, theta, beta))
return res
# integrate over r [0, 1), beta [0, 2 Pi), theta [0, 2 Pi)
def integral():
return scipy.integrate.tplquad(secondIntegrals, 0., 2.*math.pi, zero, twopi, zero, one)
expected = 16*math.pow(math.pi,5)/3.
result, err = integral()
diff = abs(result - expected)
print "Result = ", result, " estimated error = ", err
print "Known result = ", expected, " error = ", diff, " = ", 100.*diff/expected, "%"
Run Code Online (Sandbox Code Playgroud)
对于这个简单的案例来说这很慢但是给出了非常好的结果.哪个更好会归结为您的复杂W程度以及您的准确性要求.简单(快速评估)W具有高精度将推动您采用这种方法; 复杂(评估缓慢)具有中等精度要求的W将推动您使用MC技术.
Result = 1632.10498552 estimated error = 3.59054059995e-11
Known result = 1632.10498552 error = 4.54747350886e-13 = 2.7862628625e-14 %
Run Code Online (Sandbox Code Playgroud)
小智 9
Jonathan Dursi 给出了很好的答案。我只会补充他的回答。
现在scipy.integrate有一个名为的函数nquad,可以轻松执行多维积分。有关更多信息,请参阅此链接。下面我们使用nquad乔纳森的例子计算积分:
from scipy import integrate
import math
import numpy as np
def w(r, theta, phi, alpha, beta, gamma):
return(-math.log(theta * beta))
def integrand(r, theta, phi, alpha, beta, gamma):
ww = w(r, theta, phi, alpha, beta, gamma)
k = 1.
T = 1.
return (math.exp(-ww/(k*T)) - 1.)*r*r*math.sin(beta)*math.sin(theta)
result, error = integrate.nquad(integrand, [[0, 1], # r
[0, 2 * math.pi], # theta
[0, math.pi], # phi
[0, 2 * math.pi], # alpha
[0, 2 * math.pi], # beta
[0, 2 * math.pi]]) # gamma
expected = 16*math.pow(math.pi,5)/3
diff = abs(result - expected)
Run Code Online (Sandbox Code Playgroud)
结果比链式更准确tplquad:
>>> print(diff)
0.0
Run Code Online (Sandbox Code Playgroud)
我将就如何准确地完成这种积分做一些一般性的评论,但这个建议并不是针对scipy的(对于评论来说太长了,即使它不是答案).
我不知道你的用例,也就是说你是否满意于一个准确的几位数的"好"答案,可以使用Jonathan Dursi的答案中概述的蒙特卡罗直接获得,或者你是否真的想推动数字准确性尽可能高.
我自己进行了维数系数的解析,蒙特卡罗和正交计算.如果你想准确地进行积分,那么你应该做一些事情:
尝试尽可能多地执行积分; 很可能你的一些坐标中的集成非常简单.
考虑转换集成变量,以使被积函数尽可能平滑.(这有助于蒙特卡罗和正交).
对于蒙特卡罗,使用重要性采样以获得最佳收敛.
对于正交,使用7个积分,可以使用tanh-sinh积分实现真正快速的收敛.如果你可以将它归结为5个积分,那么你应该能够得到10个精度的数字作为积分.我强烈建议使用mathtool/ARPREC,David David Bailey的主页:http://www.davidhbailey.com/
| 归档时间: |
|
| 查看次数: |
12759 次 |
| 最近记录: |