我知道可以用这个periods论点来抵消,但是如何回归每月(例如交易日)的每日价格数据?
示例数据是:
In [1]: df.AAPL
2009-01-02 16:00:00 90.36
2009-01-05 16:00:00 94.18
2009-01-06 16:00:00 92.62
2009-01-07 16:00:00 90.62
2009-01-08 16:00:00 92.30
2009-01-09 16:00:00 90.19
2009-01-12 16:00:00 88.28
2009-01-13 16:00:00 87.34
2009-01-14 16:00:00 84.97
2009-01-15 16:00:00 83.02
2009-01-16 16:00:00 81.98
2009-01-20 16:00:00 77.87
2009-01-21 16:00:00 82.48
2009-01-22 16:00:00 87.98
2009-01-23 16:00:00 87.98
...
2009-12-10 16:00:00 195.59
2009-12-11 16:00:00 193.84
2009-12-14 16:00:00 196.14
2009-12-15 16:00:00 193.34
2009-12-16 16:00:00 194.20
2009-12-17 16:00:00 191.04
2009-12-18 16:00:00 194.59
2009-12-21 16:00:00 197.38
2009-12-22 16:00:00 199.50
2009-12-23 16:00:00 201.24
2009-12-24 16:00:00 208.15
2009-12-28 16:00:00 210.71
2009-12-29 16:00:00 208.21
2009-12-30 16:00:00 210.74
2009-12-31 16:00:00 209.83
Name: AAPL, Length: 252
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,简单地偏移30将不会产生正确的结果,因为时间戳数据中存在间隙,而不是每个月都是30天等等.我知道必须有一种简单的方法来使用pandas来做到这一点.
bmu*_*bmu 11
您可以将数据重新采样为营业月份.如果您不想要平均价格(默认值resample),您可以使用关键字参数使用自定义重新采样方法how:
In [31]: from pandas.io import data as web
# read some example data, note that this is not exactly your data!
In [32]: s = web.get_data_yahoo('AAPL', start='2009-01-02',
... end='2009-12-31')['Adj Close']
# resample to business month and return the last value in the period
In [34]: monthly = s.resample('BM', how=lambda x: x[-1])
In [35]: monthly
Out[35]:
Date
2009-01-30 89.34
2009-02-27 88.52
2009-03-31 104.19
...
2009-10-30 186.84
2009-11-30 198.15
2009-12-31 208.88
Freq: BM
In [36]: monthly.pct_change()
Out[36]:
Date
2009-01-30 NaN
2009-02-27 -0.009178
2009-03-31 0.177022
...
2009-10-30 0.016982
2009-11-30 0.060533
2009-12-31 0.054151
Freq: BM
Run Code Online (Sandbox Code Playgroud)