我有一个数据集,重复次数不等.我希望通过删除那些不完整的条目(即复制小于最大值)来对数据进行子集化.只是一个小例子:
set.seed(123)
mydt <- data.frame (name= rep ( c("A", "B", "C", "D", "E"), c(1,2,4,4, 3)),
var1 = rnorm (14, 3,1), var2 = rnorm (14, 4,1))
mydt
name var1 var2
1 A 2.439524 3.444159
2 B 2.769823 5.786913
3 B 4.558708 4.497850
4 C 3.070508 2.033383
5 C 3.129288 4.701356
6 C 4.715065 3.527209
7 C 3.460916 2.932176
8 D 1.734939 3.782025
9 D 2.313147 2.973996
10 D 2.554338 3.271109
11 D 4.224082 3.374961
12 E 3.359814 2.313307
13 E 3.400771 4.837787
14 E 3.110683 4.153373
Run Code Online (Sandbox Code Playgroud)
摘要(mydt)
name var1 var2
A:1 Min. :1.735 Min. :2.033
B:2 1st Qu.:2.608 1st Qu.:3.048
C:4 Median :3.120 Median :3.486
D:4 Mean :3.203 Mean :3.688
E:3 3rd Qu.:3.446 3rd Qu.:4.412
Max. :4.715 Max. :5.787
Run Code Online (Sandbox Code Playgroud)
我想从数据中删除A,B,E,因为它们不完整.因此预期输出:
name var1 var2
4 C 3.070508 2.033383
5 C 3.129288 4.701356
6 C 4.715065 3.527209
7 C 3.460916 2.932176
8 D 1.734939 3.782025
9 D 2.313147 2.973996
10 D 2.554338 3.271109
11 D 4.224082 3.374961
Run Code Online (Sandbox Code Playgroud)
请注意数据集很大,以下可能不是一个选项:
mydt[mydt$name == "C",]
mydt[mydt$name == "D", ]
Run Code Online (Sandbox Code Playgroud)
A5C*_*2T1 10
这是一个解决方案data.table:
library(data.table)
DT <- data.table(mydt, key = "name")
DT[, N := .N, by = key(DT)][N == max(N)]
# name var1 var2 N
# 1: C 3.070508 2.033383 4
# 2: C 3.129288 4.701356 4
# 3: C 4.715065 3.527209 4
# 4: C 3.460916 2.932176 4
# 5: D 1.734939 3.782025 4
# 6: D 2.313147 2.973996 4
# 7: D 2.554338 3.271109 4
# 8: D 4.224082 3.374961 4
Run Code Online (Sandbox Code Playgroud)
.N为您提供每组案例的数量,并使用复合查询data.table的选项,您可以根据您想要的新变量的条件立即进行子集化.
基数R也有几种方法,其中最明显的是table:
with(mydt, mydt[name %in% names(which(table(name) == max(table(name)))), ])
Run Code Online (Sandbox Code Playgroud)
可能不太常见,但在data.table建议方法上类似,是使用ave():
counts <- with(mydt, as.numeric(ave(as.character(name), name, FUN = length)))
mydt[counts == max(counts), ]
Run Code Online (Sandbox Code Playgroud)