Tha*_*ray 89 python parsing nlp nltk stanford-nlp
是否可以在NLTK中使用Stanford Parser?(我不是在谈论斯坦福POS.)
dan*_*r89 87
请注意,此答案适用于NLTK v 3.0,而不适用于更新版本.
当然,在Python中尝试以下内容:
import os
from nltk.parse import stanford
os.environ['STANFORD_PARSER'] = '/path/to/standford/jars'
os.environ['STANFORD_MODELS'] = '/path/to/standford/jars'
parser = stanford.StanfordParser(model_path="/location/of/the/englishPCFG.ser.gz")
sentences = parser.raw_parse_sents(("Hello, My name is Melroy.", "What is your name?"))
print sentences
# GUI
for line in sentences:
for sentence in line:
sentence.draw()
Run Code Online (Sandbox Code Playgroud)
输出:
[树('ROOT',[树('S',[树('INTJ',[树('UH',['你好'])]),树(',',[',']),树('NP',[树('PRP $',['我''),树('NN',['名称'])]),树('VP',[树('VBZ',[ '是'],树('ADJP',[树('JJ',['Melroy'])])]),树('.',['.'])])]),树(' ROOT',[树('SBARQ',[树('WHNP',[树('WP',['什么'])]),树('SQ',[树('VBZ',['是' ]),树('NP',[树('PRP $',['你''),树('NN',['名称'])])]),树('.',['? "])])])]
注1: 在此示例中,解析器和模型jar都在同一文件夹中.
笔记2:
注3: 本englishPCFG.ser.gz文件,可以发现里面的models.jar文件(/edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz).请使用come archive manager来"解压缩"models.jar文件.
注意4: 确保您使用的是Java JRE(运行时环境)1.8,也称为Oracle JDK 8.否则您将获得:不支持的major.minor版本52.0.
从https://github.com/nltk/nltk下载NLTK v3 .并安装NLTK:
sudo python setup.py安装
您可以使用NLTK下载程序使用Python获取Stanford Parser:
import nltk
nltk.download()
Run Code Online (Sandbox Code Playgroud)试试我的榜样!(不要忘记更改jar路径并将模型路径更改为ser.gz位置)
要么:
下载并安装NLTK v3,与上面相同.
从(当前版本 filename是stanford-parser-full-2015-01-29.zip)下载最新版本:http: //nlp.stanford.edu/software/lex-parser.shtml#Download
提取standford-parser-full-20xx-xx-xx.zip.
创建一个新文件夹(在我的示例中为'jars').将提取的文件放入此jar文件夹:stanford-parser-3.xx-models.jar和stanford-parser.jar.
如上所示,您可以使用环境变量(STANFORD_PARSER和STANFORD_MODELS)指向此'jars'文件夹.我正在使用Linux,所以如果你使用Windows,请使用类似:C:// folder // jars.
使用Archive manager(7zip)打开stanford-parser-3.xx-models.jar.
浏览jar文件; 埃杜/斯坦福/ NLP /模型/ lexparser.再次,提取名为'englishPCFG.ser.gz'的文件.记住提取此ser.gz文件的位置.
创建StanfordParser实例时,可以将模型路径作为参数提供.这是模型的完整路径,在我们的案例中为/location/of/englishPCFG.ser.gz.
试试我的榜样!(不要忘记更改jar路径并将模型路径更改为ser.gz位置)
alv*_*vas 77
下面是过时的答案,请用该解决方案/sf/answers/3638709651/为NLTK V3.3及以上.
注意:以下答案仅适用于:
由于这两种工具变化相当快,因此API可能在3-6个月后看起来非常不同.请将以下答案视为时间而非永恒的解决方案.
请参阅https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software以获取有关如何使用NLTK连接Stanford NLP工具的最新说明!
cd $HOME
# Update / Install NLTK
pip install -U nltk
# Download the Stanford NLP tools
wget http://nlp.stanford.edu/software/stanford-ner-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-postagger-full-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
# Extract the zip file.
unzip stanford-ner-2015-04-20.zip
unzip stanford-parser-full-2015-04-20.zip
unzip stanford-postagger-full-2015-04-20.zip
export STANFORDTOOLSDIR=$HOME
export CLASSPATH=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/stanford-postagger.jar:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/stanford-ner.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar
export STANFORD_MODELS=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/models:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/classifiers
Run Code Online (Sandbox Code Playgroud)
然后:
>>> from nltk.tag.stanford import StanfordPOSTagger
>>> st = StanfordPOSTagger('english-bidirectional-distsim.tagger')
>>> st.tag('What is the airspeed of an unladen swallow ?'.split())
[(u'What', u'WP'), (u'is', u'VBZ'), (u'the', u'DT'), (u'airspeed', u'NN'), (u'of', u'IN'), (u'an', u'DT'), (u'unladen', u'JJ'), (u'swallow', u'VB'), (u'?', u'.')]
>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
[(u'Rami', u'PERSON'), (u'Eid', u'PERSON'), (u'is', u'O'), (u'studying', u'O'), (u'at', u'O'), (u'Stony', u'ORGANIZATION'), (u'Brook', u'ORGANIZATION'), (u'University', u'ORGANIZATION'), (u'in', u'O'), (u'NY', u'O')]
>>> from nltk.parse.stanford import StanfordParser
>>> parser=StanfordParser(model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz")
>>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog"))
[Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])]
>>> from nltk.parse.stanford import StanfordDependencyParser
>>> dep_parser=StanfordDependencyParser(model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz")
>>> print [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")]
[Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])])]
Run Code Online (Sandbox Code Playgroud)
首先,必须注意斯坦福NLP工具是用Java编写的,而NLTK是用Python编写的.NLTK连接工具的方式是通过命令行界面调用Java工具.
其次,NLTK自版本3.1以来,斯坦福NLP工具的API发生了很大变化.因此建议将NLTK软件包更新到v3.1.
第三,NLTK斯坦福NLP工具的API包含各个NLP工具,例如Stanford POS tagger,Stanford NER Tagger,Stanford Parser.
对于POS和NER标记器,它不包围Stanford Core NLP包.
对于Stanford Parser来说,这是一个特殊情况,包括斯坦福分析器和斯坦福核心NLP(个人而言,我没有使用NLTK后者,我宁愿在http://www.eecs上关注@dimazest的演示. qmul.ac.uk/~dm303/stanford-dependency-parser-nltk-and-anaconda.html)
注意,NLTK V3.1中,STANFORD_JAR并且STANFORD_PARSER变量已被弃用,不再使用
假设您已在您的操作系统上正确安装了Java.
现在,安装/更新您的NLTK版本(请参阅http://www.nltk.org/install.html):
sudo pip install -U nltksudo apt-get install python-nltk对于Windows(使用32位二进制安装):
(为什么不是64位?请参阅https://github.com/nltk/nltk/issues/1079)
然后出于偏执,nltk在python中重新检查你的版本:
from __future__ import print_function
import nltk
print(nltk.__version__)
Run Code Online (Sandbox Code Playgroud)
或者在命令行上:
python3 -c "import nltk; print(nltk.__version__)"
Run Code Online (Sandbox Code Playgroud)
确保您将其3.1视为输出.
对于更多的偏执狂,请检查所有您最喜爱的Stanford NLP工具API是否可用:
from nltk.parse.stanford import StanfordParser
from nltk.parse.stanford import StanfordDependencyParser
from nltk.parse.stanford import StanfordNeuralDependencyParser
from nltk.tag.stanford import StanfordPOSTagger, StanfordNERTagger
from nltk.tokenize.stanford import StanfordTokenizer
Run Code Online (Sandbox Code Playgroud)
(注意:上面的导入只能确保您使用包含这些API的正确NLTK版本.导入中没有看到错误并不意味着您已成功配置NLTK API以使用Stanford工具)
现在您已经检查过您是否拥有包含必要的Stanford NLP工具界面的正确版本的NLTK.您需要下载并提取所有必需的Stanford NLP工具.
TL; DR,在Unix中:
cd $HOME
# Download the Stanford NLP tools
wget http://nlp.stanford.edu/software/stanford-ner-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-postagger-full-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
# Extract the zip file.
unzip stanford-ner-2015-04-20.zip
unzip stanford-parser-full-2015-04-20.zip
unzip stanford-postagger-full-2015-04-20.zip
Run Code Online (Sandbox Code Playgroud)
在Windows/Mac中:
设置环境变量,使NLTK可以自动找到相关的文件路径.您必须设置以下变量:
将适当的Stanford NLP .jar文件添加到 CLASSPATH环境变量中.
stanford-ner-2015-04-20/stanford-ner.jarstanford-postagger-full-2015-04-20/stanford-postagger.jarstanford-parser-full-2015-04-20/stanford-parser.jar和解析器模型jar文件,stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar将相应的模型目录添加到STANFORD_MODELS变量(即可以找到保存预训练模型的目录)
stanford-ner-2015-04-20/classifiers/stanford-postagger-full-2015-04-20/models/在代码中,看到它STANFORD_MODELS在附加模型名称之前搜索目录.另请注意,API还会自动尝试在OS环境中搜索`CLASSPATH)
请注意,自NLTK v3.1起,STANFORD_JAR变量已弃用且不再使用.以下Stackoverflow问题中找到的代码段可能不起作用:
TL; Ubuntu上的STEP 3 DR
export STANFORDTOOLSDIR=/home/path/to/stanford/tools/
export CLASSPATH=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/stanford-postagger.jar:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/stanford-ner.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar
export STANFORD_MODELS=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/models:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/classifiers
Run Code Online (Sandbox Code Playgroud)
(对于Windows:有关设置环境变量的说明,请参阅/sf/answers/1202349641/)
你必须在开始python之前设置如上所述的变量,然后:
>>> from nltk.tag.stanford import StanfordPOSTagger
>>> st = StanfordPOSTagger('english-bidirectional-distsim.tagger')
>>> st.tag('What is the airspeed of an unladen swallow ?'.split())
[(u'What', u'WP'), (u'is', u'VBZ'), (u'the', u'DT'), (u'airspeed', u'NN'), (u'of', u'IN'), (u'an', u'DT'), (u'unladen', u'JJ'), (u'swallow', u'VB'), (u'?', u'.')]
>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
[(u'Rami', u'PERSON'), (u'Eid', u'PERSON'), (u'is', u'O'), (u'studying', u'O'), (u'at', u'O'), (u'Stony', u'ORGANIZATION'), (u'Brook', u'ORGANIZATION'), (u'University', u'ORGANIZATION'), (u'in', u'O'), (u'NY', u'O')]
>>> from nltk.parse.stanford import StanfordParser
>>> parser=StanfordParser(model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz")
>>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog"))
[Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])]
Run Code Online (Sandbox Code Playgroud)
或者,您可以尝试在python中添加环境变量,如前面的答案所示,但您也可以直接告诉解析器/标记器初始化到保存.jar文件和模型的直接路径.
有没有必要,如果您使用以下方法来设置环境变量,但在API改变其参数名称,则需要相应地改变.这就是为什么设置环境变量比修改你的python代码以适应NLTK版本更合适的原因.
例如(不设置任何环境变量):
# POS tagging:
from nltk.tag import StanfordPOSTagger
stanford_pos_dir = '/home/alvas/stanford-postagger-full-2015-04-20/'
eng_model_filename= stanford_pos_dir + 'models/english-left3words-distsim.tagger'
my_path_to_jar= stanford_pos_dir + 'stanford-postagger.jar'
st = StanfordPOSTagger(model_filename=eng_model_filename, path_to_jar=my_path_to_jar)
st.tag('What is the airspeed of an unladen swallow ?'.split())
# NER Tagging:
from nltk.tag import StanfordNERTagger
stanford_ner_dir = '/home/alvas/stanford-ner/'
eng_model_filename= stanford_ner_dir + 'classifiers/english.all.3class.distsim.crf.ser.gz'
my_path_to_jar= stanford_ner_dir + 'stanford-ner.jar'
st = StanfordNERTagger(model_filename=eng_model_filename, path_to_jar=my_path_to_jar)
st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
# Parsing:
from nltk.parse.stanford import StanfordParser
stanford_parser_dir = '/home/alvas/stanford-parser/'
eng_model_path = stanford_parser_dir + "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
my_path_to_models_jar = stanford_parser_dir + "stanford-parser-3.5.2-models.jar"
my_path_to_jar = stanford_parser_dir + "stanford-parser.jar"
parser=StanfordParser(model_path=eng_model_path, path_to_models_jar=my_path_to_models_jar, path_to_jar=my_path_to_jar)
Run Code Online (Sandbox Code Playgroud)
alv*_*vas 22
以下答案已弃用,请使用/sf/answers/3638709651/上的解决方案获取NLTK v3.3及更高版本.
截至目前的斯坦福解析器(2015-04-20),其默认输出lexparser.sh已更改,因此下面的脚本将无法正常工作.
但是这个答案是为了传统而保留的,它仍然适用于http://nlp.stanford.edu/software/stanford-parser-2012-11-12.zip.
我建议你不要乱用Jython,JPype.让python做python的东西,让java做java的东西,通过控制台获取Stanford Parser输出.
在您的主目录中安装Stanford Parser后~/,只需使用此python配方即可获得平坦的括号内解析:
import os
sentence = "this is a foo bar i want to parse."
os.popen("echo '"+sentence+"' > ~/stanfordtemp.txt")
parser_out = os.popen("~/stanford-parser-2012-11-12/lexparser.sh ~/stanfordtemp.txt").readlines()
bracketed_parse = " ".join( [i.strip() for i in parser_out if i.strip()[0] == "("] )
print bracketed_parse
Run Code Online (Sandbox Code Playgroud)
alv*_*vas 16
从NLTK v3.3开始,用户应避免使用Stanford NER或POS标签nltk.tag,并避免使用 Stanford tokenizer/segmenter nltk.tokenize.
而是使用新的nltk.parse.corenlp.CoreNLPParserAPI.
请参阅https://github.com/nltk/nltk/wiki/Stanford-CoreNLP-API-in-NLTK
(避免链接回答,我已经从NLTK github wiki下面粘贴了文档)
首先,更新您的NLTK
pip3 install -U nltk # Make sure is >=3.3
Run Code Online (Sandbox Code Playgroud)
然后下载必要的CoreNLP包:
cd ~
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-02-27.zip
unzip stanford-corenlp-full-2018-02-27.zip
cd stanford-corenlp-full-2018-02-27
# Get the Chinese model
wget http://nlp.stanford.edu/software/stanford-chinese-corenlp-2018-02-27-models.jar
wget https://raw.githubusercontent.com/stanfordnlp/CoreNLP/master/src/edu/stanford/nlp/pipeline/StanfordCoreNLP-chinese.properties
# Get the Arabic model
wget http://nlp.stanford.edu/software/stanford-arabic-corenlp-2018-02-27-models.jar
wget https://raw.githubusercontent.com/stanfordnlp/CoreNLP/master/src/edu/stanford/nlp/pipeline/StanfordCoreNLP-arabic.properties
# Get the French model
wget http://nlp.stanford.edu/software/stanford-french-corenlp-2018-02-27-models.jar
wget https://raw.githubusercontent.com/stanfordnlp/CoreNLP/master/src/edu/stanford/nlp/pipeline/StanfordCoreNLP-french.properties
# Get the German model
wget http://nlp.stanford.edu/software/stanford-german-corenlp-2018-02-27-models.jar
wget https://raw.githubusercontent.com/stanfordnlp/CoreNLP/master/src/edu/stanford/nlp/pipeline/StanfordCoreNLP-german.properties
# Get the Spanish model
wget http://nlp.stanford.edu/software/stanford-spanish-corenlp-2018-02-27-models.jar
wget https://raw.githubusercontent.com/stanfordnlp/CoreNLP/master/src/edu/stanford/nlp/pipeline/StanfordCoreNLP-spanish.properties
Run Code Online (Sandbox Code Playgroud)
仍在stanford-corenlp-full-2018-02-27目录中,启动服务器:
java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-preload tokenize,ssplit,pos,lemma,ner,parse,depparse \
-status_port 9000 -port 9000 -timeout 15000 &
Run Code Online (Sandbox Code Playgroud)
然后在Python中:
>>> from nltk.parse import CoreNLPParser
# Lexical Parser
>>> parser = CoreNLPParser(url='http://localhost:9000')
# Parse tokenized text.
>>> list(parser.parse('What is the airspeed of an unladen swallow ?'.split()))
[Tree('ROOT', [Tree('SBARQ', [Tree('WHNP', [Tree('WP', ['What'])]), Tree('SQ', [Tree('VBZ', ['is']), Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('NN', ['airspeed'])]), Tree('PP', [Tree('IN', ['of']), Tree('NP', [Tree('DT', ['an']), Tree('JJ', ['unladen'])])]), Tree('S', [Tree('VP', [Tree('VB', ['swallow'])])])])]), Tree('.', ['?'])])])]
# Parse raw string.
>>> list(parser.raw_parse('What is the airspeed of an unladen swallow ?'))
[Tree('ROOT', [Tree('SBARQ', [Tree('WHNP', [Tree('WP', ['What'])]), Tree('SQ', [Tree('VBZ', ['is']), Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('NN', ['airspeed'])]), Tree('PP', [Tree('IN', ['of']), Tree('NP', [Tree('DT', ['an']), Tree('JJ', ['unladen'])])]), Tree('S', [Tree('VP', [Tree('VB', ['swallow'])])])])]), Tree('.', ['?'])])])]
# Neural Dependency Parser
>>> from nltk.parse.corenlp import CoreNLPDependencyParser
>>> dep_parser = CoreNLPDependencyParser(url='http://localhost:9000')
>>> parses = dep_parser.parse('What is the airspeed of an unladen swallow ?'.split())
>>> [[(governor, dep, dependent) for governor, dep, dependent in parse.triples()] for parse in parses]
[[(('What', 'WP'), 'cop', ('is', 'VBZ')), (('What', 'WP'), 'nsubj', ('airspeed', 'NN')), (('airspeed', 'NN'), 'det', ('the', 'DT')), (('airspeed', 'NN'), 'nmod', ('swallow', 'VB')), (('swallow', 'VB'), 'case', ('of', 'IN')), (('swallow', 'VB'), 'det', ('an', 'DT')), (('swallow', 'VB'), 'amod', ('unladen', 'JJ')), (('What', 'WP'), 'punct', ('?', '.'))]]
# Tokenizer
>>> parser = CoreNLPParser(url='http://localhost:9000')
>>> list(parser.tokenize('What is the airspeed of an unladen swallow?'))
['What', 'is', 'the', 'airspeed', 'of', 'an', 'unladen', 'swallow', '?']
# POS Tagger
>>> pos_tagger = CoreNLPParser(url='http://localhost:9000', tagtype='pos')
>>> list(pos_tagger.tag('What is the airspeed of an unladen swallow ?'.split()))
[('What', 'WP'), ('is', 'VBZ'), ('the', 'DT'), ('airspeed', 'NN'), ('of', 'IN'), ('an', 'DT'), ('unladen', 'JJ'), ('swallow', 'VB'), ('?', '.')]
# NER Tagger
>>> ner_tagger = CoreNLPParser(url='http://localhost:9000', tagtype='ner')
>>> list(ner_tagger.tag(('Rami Eid is studying at Stony Brook University in NY'.split())))
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'), ('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'), ('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'STATE_OR_PROVINCE')]
Run Code Online (Sandbox Code Playgroud)
以不同的方式启动服务器,仍然来自`stanford-corenlp-full-2018-02-27目录:
java -Xmx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-serverProperties StanfordCoreNLP-chinese.properties \
-preload tokenize,ssplit,pos,lemma,ner,parse \
-status_port 9001 -port 9001 -timeout 15000
Run Code Online (Sandbox Code Playgroud)
在Python中:
>>> parser = CoreNLPParser('http://localhost:9001')
>>> list(parser.tokenize(u'???????'))
['??', '??', '??', '?']
>>> list(parser.parse(parser.tokenize(u'???????')))
[Tree('ROOT', [Tree('IP', [Tree('IP', [Tree('NP', [Tree('NN', ['??'])]), Tree('VP', [Tree('VE', ['??']), Tree('NP', [Tree('NN', ['??'])])])]), Tree('PU', ['?'])])])]
Run Code Online (Sandbox Code Playgroud)
启动服务器:
java -Xmx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-serverProperties StanfordCoreNLP-arabic.properties \
-preload tokenize,ssplit,pos,parse \
-status_port 9005 -port 9005 -timeout 15000
Run Code Online (Sandbox Code Playgroud)
在Python中:
>>> from nltk.parse import CoreNLPParser
>>> parser = CoreNLPParser('http://localhost:9005')
>>> text = u'??? ????'
# Parser.
>>> parser.raw_parse(text)
<list_iterator object at 0x7f0d894c9940>
>>> list(parser.raw_parse(text))
[Tree('ROOT', [Tree('S', [Tree('NP', [Tree('PRP', ['???'])]), Tree('NP', [Tree('NN', ['????'])])])])]
>>> list(parser.parse(parser.tokenize(text)))
[Tree('ROOT', [Tree('S', [Tree('NP', [Tree('PRP', ['???'])]), Tree('NP', [Tree('NN', ['????'])])])])]
# Tokenizer / Segmenter.
>>> list(parser.tokenize(text))
['???', '????']
# POS tagg
>>> pos_tagger = CoreNLPParser('http://localhost:9005', tagtype='pos')
>>> list(pos_tagger.tag(parser.tokenize(text)))
[('???', 'PRP'), ('????', 'NN')]
# NER tag
>>> ner_tagger = CoreNLPParser('http://localhost:9005', tagtype='ner')
>>> list(ner_tagger.tag(parser.tokenize(text)))
[('???', 'O'), ('????', 'O')]
Run Code Online (Sandbox Code Playgroud)
启动服务器:
java -Xmx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-serverProperties StanfordCoreNLP-french.properties \
-preload tokenize,ssplit,pos,parse \
-status_port 9004 -port 9004 -timeout 15000
Run Code Online (Sandbox Code Playgroud)
在Python中:
>>> parser = CoreNLPParser('http://localhost:9004')
>>> list(parser.parse('Je suis enceinte'.split()))
[Tree('ROOT', [Tree('SENT', [Tree('NP', [Tree('PRON', ['Je']), Tree('VERB', ['suis']), Tree('AP', [Tree('ADJ', ['enceinte'])])])])])]
>>> pos_tagger = CoreNLPParser('http://localhost:9004', tagtype='pos')
>>> pos_tagger.tag('Je suis enceinte'.split())
[('Je', 'PRON'), ('suis', 'VERB'), ('enceinte', 'ADJ')]
Run Code Online (Sandbox Code Playgroud)
启动服务器:
java -Xmx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-serverProperties StanfordCoreNLP-german.properties \
-preload tokenize,ssplit,pos,ner,parse \
-status_port 9002 -port 9002 -timeout 15000
Run Code Online (Sandbox Code Playgroud)
在Python中:
>>> parser = CoreNLPParser('http://localhost:9002')
>>> list(parser.raw_parse('Ich bin schwanger'))
[Tree('ROOT', [Tree('NUR', [Tree('S', [Tree('PPER', ['Ich']), Tree('VAFIN', ['bin']), Tree('AP', [Tree('ADJD', ['schwanger'])])])])])]
>>> list(parser.parse('Ich bin schwanger'.split()))
[Tree('ROOT', [Tree('NUR', [Tree('S', [Tree('PPER', ['Ich']), Tree('VAFIN', ['bin']), Tree('AP', [Tree('ADJD', ['schwanger'])])])])])]
>>> pos_tagger = CoreNLPParser('http://localhost:9002', tagtype='pos')
>>> pos_tagger.tag('Ich bin schwanger'.split())
[('Ich', 'PPER'), ('bin', 'VAFIN'), ('schwanger', 'ADJD')]
>>> pos_tagger = CoreNLPParser('http://localhost:9002', tagtype='pos')
>>> pos_tagger.tag('Ich bin schwanger'.split())
[('Ich', 'PPER'), ('bin', 'VAFIN'), ('schwanger', 'ADJD')]
>>> ner_tagger = CoreNLPParser('http://localhost:9002', tagtype='ner')
>>> ner_tagger.tag('Donald Trump besuchte Angela Merkel in Berlin.'.split())
[('Donald', 'PERSON'), ('Trump', 'PERSON'), ('besuchte', 'O'), ('Angela', 'PERSON'), ('Merkel', 'PERSON'), ('in', 'O'), ('Berlin', 'LOCATION'), ('.', 'O')]
Run Code Online (Sandbox Code Playgroud)
启动服务器:
java -Xmx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer \
-serverProperties StanfordCoreNLP-spanish.properties \
-preload tokenize,ssplit,pos,ner,parse \
-status_port 9003 -port 9003 -timeout 15000
Run Code Online (Sandbox Code Playgroud)
在Python中:
>>> pos_tagger = CoreNLPParser('http://localhost:9003', tagtype='pos')
>>> pos_tagger.tag(u'Barack Obama salió con Michael Jackson .'.split())
[('Barack', 'PROPN'), ('Obama', 'PROPN'), ('salió', 'VERB'), ('con', 'ADP'), ('Michael', 'PROPN'), ('Jackson', 'PROPN'), ('.', 'PUNCT')]
>>> ner_tagger = CoreNLPParser('http://localhost:9003', tagtype='ner')
>>> ner_tagger.tag(u'Barack Obama salió con Michael Jackson .'.split())
[('Barack', 'PERSON'), ('Obama', 'PERSON'), ('salió', 'O'), ('con', 'O'), ('Michael', 'PERSON'), ('Jackson', 'PERSON'), ('.', 'O')]
Run Code Online (Sandbox Code Playgroud)
如果我记得很清楚,斯坦福解析器是一个java库,因此您必须在服务器/计算机上运行Java解释器.
我曾经使用它一次服务器,结合PHP脚本.该脚本使用php的exec()函数对解析器进行命令行调用,如下所示:
<?php
exec( "java -cp /pathTo/stanford-parser.jar -mx100m edu.stanford.nlp.process.DocumentPreprocessor /pathTo/fileToParse > /pathTo/resultFile 2>/dev/null" );
?>
Run Code Online (Sandbox Code Playgroud)
我不记得这个命令的所有细节,它基本上打开了fileToParse,解析了它,并在resultFile中写了输出.然后,PHP将打开结果文件以供进一步使用.
命令的结尾将解析器的详细信息指向NULL,以防止不必要的命令行信息干扰脚本.
我对Python知之甚少,但可能有一种方法可以进行命令行调用.
它可能不是你希望的确切路线,但希望它会给你一些灵感.祝你好运.
小智 6
请注意,此答案适用于NLTK v 3.0,而不适用于更新版本.
以下是对windoze中nltk3.0.0一起使用的danger98代码的改编,也可能是其他平台,根据您的设置调整目录名称:
import os
from nltk.parse import stanford
os.environ['STANFORD_PARSER'] = 'd:/stanford-parser'
os.environ['STANFORD_MODELS'] = 'd:/stanford-parser'
os.environ['JAVAHOME'] = 'c:/Program Files/java/jre7/bin'
parser = stanford.StanfordParser(model_path="d:/stanford-grammars/englishPCFG.ser.gz")
sentences = parser.raw_parse_sents(("Hello, My name is Melroy.", "What is your name?"))
print sentences
Run Code Online (Sandbox Code Playgroud)
请注意,解析命令已更改(请参阅www.nltk.org/_modules/nltk/parse/stanford.html上的源代码),并且您需要定义JAVAHOME变量.我试图让它在jar中原位读取语法文件,但到目前为止还没有做到.
| 归档时间: |
|
| 查看次数: |
86675 次 |
| 最近记录: |