在Haskell中多次使用相同的随机数

Sep*_*pia 1 random monads haskell

我正在尝试使用Haskell创建一个Paper Scissors Stone游戏来练习我对它的理解.

不幸的是,下面的源代码给出了不必要的答案

例如:

>play pStone pRandom 1
1 games were played. Player 1 won 1 and player 2 won 1, making the match a draw.
Run Code Online (Sandbox Code Playgroud)

如果玩1场比赛,则应该只有1或0胜.

>play pStone pCopy 100
100 games were played. Player 1 won 1 and player 2 won 1, making the match a draw.
Run Code Online (Sandbox Code Playgroud)

如果玩了100场比赛,那么(在第一轮之后)两个都进行相同的动作,那么应该只有1或0胜.

>play pCopy pAntiCopy 100
100 games were played. Player 1 won 31 and player 2 won 37, making player 2 the overall winner.
Run Code Online (Sandbox Code Playgroud)

根据pCopy和pAntiCopy的预期定义,pAntiCopy应该赢得99或100,pCopy应该赢得0或1.

我认为这种行为的最可能原因是随机数在最后进行评估,这意味着应该依赖于相同随机数的2个值依赖于2个单独的随机数.我在上面是否正确?

如果我是对的,请你告诉我如何纠正这个问题?如果我不对,请告诉我问题是什么以及如何解决?

我已经阅读了一个单独问题的解决方案,建议生成一个随机数列表然后使用它们,将它们作为参数传递给主函数中的相关函数.我不相信这会在这里工作得很好,因为所需的随机数的数量可以是0到2*numRounds,取决于所使用的计划(我打算在这个工作时创建更高级的计划)和代码的可读性会进一步降低.

我是Haskell的新手和一般的函数式编程,所以我为下面的源代码风格道歉.如果您对如何改进有任何建议,也欢迎他们.

import System.Random

data Move= Paper|Scissors|Stone deriving Show
type Plan=([IO Move]->[IO Move]->IO Move)

play :: Plan -> Plan -> Integer -> IO ()
play plan1 plan2 numRounds=do p1intwins<-p1wins;p2intwins<-p2wins;putStr(show numRounds ++ " games were played. Player 1 won " ++ show p1intwins ++ " and player 2 won " ++ show p2intwins ++ ", making " ++ (if p1intwins > p2intwins then "player 1 the overall winner." else (if p1intwins < p2intwins then "player 2 the overall winner." else "the match a draw."))) where (_, _, _, _, _, _, p1wins, p2wins)=(playRound (plan1, plan2, numRounds,[],[], 0, return 0, return 0))

playRound :: (Plan, Plan, Integer, [IO Move], [IO Move], Integer, IO Integer, IO Integer) -> (Plan, Plan, Integer, [IO Move], [IO Move], Integer, IO Integer, IO Integer)
playRound (plan1, plan2, numRounds, p1moves, p2moves, elapsedRounds, p1wins, p2wins)=if elapsedRounds==numRounds then (plan1, plan2, numRounds, p1moves, p2moves, elapsedRounds, p1wins, p2wins) else (playRound (plan1, plan2, numRounds, p1moves++[p1move], p2moves++[p2move], elapsedRounds+1, do p1win<-beatsCaller p1move p2move;p1intwins<-p1wins;return (p1intwins+if p1win then 1 else 0), do p2win<-beatsCaller p2move p1move;p2intwins<-p2wins;return(p2intwins+(if p2win then 1 else 0)) )) where p1move=plan1 p1moves p2moves; p2move=plan2 p2moves p1moves

beatsCaller :: IO Move -> IO Move -> IO Bool
beatsCaller iom1 iom2=do m1<-iom1;m2<-iom2;return(beats m1 m2)

beats :: Move -> Move -> Bool
beats Scissors Paper=True
beats Stone Scissors=True
beats Paper Stone=True
beats _ _=False

--                                           ###############Plans###################
pStone :: Plan
pStone _ _ = return Stone

pScissors :: Plan
pScissors _ _ = return Scissors

pPaper :: Plan
pPaper _ _ = return Paper

pUScissors :: Plan
pUScissors [] _ = randomMove
pUScissors _ _ = return Scissors

pCopy :: Plan
pCopy _ []= randomMove
pCopy _ theirMoves= last theirMoves

pRandom :: Plan
pRandom _ _=randomMove

pAntiCopy :: Plan
pAntiCopy [] _ = randomMove
pAntiCopy ourMoves _ = do ourMove<-last ourMoves;return(beaterOf ourMove)

--                                           ##############Plan Logic###############

beaterOf ::  Move -> Move
beaterOf Scissors = Stone
beaterOf Paper = Scissors
beaterOf Stone = Paper

randomMove :: IO Move
randomMove=do x<-genRandom;return (doRMove x)

doRMove:: Int -> Move
doRMove rand
    |rand==1 =Paper
    |rand==2 =Scissors
    |rand==3 =Stone

genRandom :: IO Int
genRandom =getStdRandom (randomR (1,3))
Run Code Online (Sandbox Code Playgroud)

kos*_*kus 6

我稍微重新格式化并注释了你的源文件.最重要的一点是,你应该改变的类型Plan[Move] -> [Move] -> IO Move,如下所述.

import System.Random

data Move = Paper | Scissors | Stone
  deriving (Show, Eq, Enum, Bounded)

-- Make Move an instance of Random, so that we can use randomIO
-- in order to pick a random Move rather than a hand-written
-- function. We use the derived Enum instance and integer random
-- numbers to do the hard work for us.
instance Random Move where
  randomR (l, u) g = (toEnum n, g')
    where (n, g') = randomR (fromEnum l, fromEnum u) g
  random = randomR (minBound, maxBound)

-- Unchanged, just realigned.
beaterOf :: Move -> Move
beaterOf Scissors = Stone
beaterOf Paper    = Scissors
beaterOf Stone    = Paper

-- Reimplemented in terms of beaterOf, to avoid unnecessary
-- duplication of error-prone information.
beats :: Move -> Move -> Bool
beats x y = x == beaterOf y

-- Most important change. A plan is a strategy that takes two
-- lists of past moves. These are of type Move, not IO Move, as
-- they have already happened. We then have to determine a new
-- one. Here, to choose the next, we allow IO (such as picking
-- a random number, or asking a human player). I also reverse
-- the order of moves, so that the most recent moves are first,
-- because most strategies access the most recent move, and
-- accessing the head is more efficient in a list.
type Plan =  [Move]  -- my moves, latest move first
          -> [Move]  -- opponent's moves, latest move first
          -> IO Move -- my next move, may involve IO

--
-- Specific plans (slightly renamed, otherwise unchanged):
--

-- Always plays a particular move.
always :: Move -> Plan
always m _ _ = return m

-- Copies the latest move of opponent.
copy :: Plan
copy _ []           = randomIO
copy _ (latest : _) = return latest

randomly :: Plan
randomly _ _ = randomIO

-- Moves to the beater of our previous move.
antiCopy :: Plan
antiCopy []           _ = randomIO
antiCopy (latest : _) _ = return (beaterOf latest)

uScissors :: Plan
uScissors [] _ = randomIO
uScissors _  _ = return Scissors

-- Play wrapper. Interface as before.
play :: Plan    -- my plan
     -> Plan    -- opponent's plan
     -> Integer -- number of rounds to be played
     -> IO ()   -- output is printed as text
play myPlan opPlan rounds = do
  (myWins, opWins) <- playRounds
                        myPlan opPlan rounds
                        [] [] -- initialize with empty move lists
                        0 0   -- and 0 wins each
  -- print statistics
  let overallStatus | myWins > opWins = "Player 1 the overall winner"
                    | opWins > myWins = "Player 2 the overall winner"
                    | otherwise       = "the match a draw"
  putStrLn $ show rounds ++ " games were played. "
          ++ "Player 1 won " ++ show myWins ++ " and "
          ++ "Player 2 won " ++ show opWins ++ ", making "
          ++ overallStatus ++ "."

-- Does all the hard work.
playRounds :: Plan    -- my plan
           -> Plan    -- opponent's plan
           -> Integer -- number of rounds still to be played
           -> [Move]  -- our moves so far, latest first
           -> [Move]  -- opponent's moves so far, latest first
           -> Int     -- my wins
           -> Int     -- opponent's wins
           -> IO (Int, Int)  -- final wins
playRounds _      _      0      _       _       myWins opWins =
  return (myWins, opWins) -- if no rounds are left to play, return the final statistics
playRound myPlan opPlan rounds myMoves opMoves myWins opWins = do
  myMove <- myPlan myMoves opMoves -- here's where a random number might get chosen
  opMove <- opPlan opMoves myMoves -- and here again (but nowhere else)
  let myWin = myMove `beats` opMove -- this works on the already chosen Move, not on IO Move
      opWin = opMove `beats` myMove -- dito
  playRound
    myPlan opPlan      -- as before
    (rounds - 1)       -- one round is played
    (myMove : myMoves) -- adding moves in front of the list is easier
    (opMove : opMoves)
    (fromEnum myWin + myWins) -- update win count, turning True to 1 and False to 0
    (fromEnum opWin + opWins)
Run Code Online (Sandbox Code Playgroud)