Networkx随机几何图形限制半径r内的节点

mar*_*rth 3 python graph networkx

所以我有来自networkx示例的代码,但我想弄清楚如何限制半径'r'内的节点,以便在圆的范围内绘制随机几何图形.我知道如何以逻辑方式做到这一点,但我有点困惑,一切如何运作,并且到目前为止我一直试图自己解决这个问题.谢谢您的帮助!

import networkx as nx
import matplotlib.pyplot as plt

G = nx.random_geometric_graph(1000,0.1)

# position is stored as node attribute data for random_geometric_graph
pos = nx.get_node_attributes(G,'pos')

# find node near center (0.5,0.5)
dmin =1
ncenter =0
for n in pos:
    x,y = pos[n]
    d = (x-0.5)**2+(y-0.5)**2
    if d<dmin:
        ncenter = n
        dmin = d

# color by path length from node near center
p = nx.single_source_shortest_path_length(G,ncenter)

plt.figure(figsize=(8,8))
#node_color=p.values()
nx.draw_networkx_edges(G,pos,nodelist=[ncenter],alpha=0.4)
nx.draw_networkx_nodes(G,pos,nodelist=p.keys(),
                   node_size=80,
                   node_color='#0F1C95',
                   cmap=plt.cm.Reds_r)

plt.xlim(-0.05,1.05)
plt.ylim(-0.05,1.05)
plt.axis('off')
plt.savefig('random_geometric_graph.png')
plt.show()
Run Code Online (Sandbox Code Playgroud)

unu*_*tbu 5

你可以使用dict理解,例如

p = {node:length for node, length in nx.single_source_shortest_path_length(G,ncenter).items()
     if length < 5}
Run Code Online (Sandbox Code Playgroud)

将dict限制为距离ncenter为<5的节点.

对于Python2.6或更早版本,您可以使用

p = dict((node, length) for node, length in nx.single_source_shortest_path_length(G,ncenter).items()
     if length < 5)
Run Code Online (Sandbox Code Playgroud)

你也可以替换

dmin =1
ncenter =0
for n in pos:
    x,y = pos[n]
    d = (x-0.5)**2+(y-0.5)**2
    if d<dmin:
        ncenter = n
        dmin = d
Run Code Online (Sandbox Code Playgroud)

单线:

ncenter, _ = min(pos.items(), key = lambda (node, (x,y)): (x-0.5)**2+(y-0.5)**2)
Run Code Online (Sandbox Code Playgroud)

要仅绘制距离ncenter为<5的节点,请定义子图:

H = G.subgraph(p.keys())    
nx.draw_networkx_edges(H, pos, alpha = 0.4)
nx.draw_networkx_nodes(H, pos, node_size = 80, node_color = node_color,
                       cmap = plt.get_cmap('Reds_r'))
Run Code Online (Sandbox Code Playgroud)
import networkx as nx
import matplotlib.pyplot as plt
G = nx.random_geometric_graph(1000, 0.1)

# position is stored as node attribute data for random_geometric_graph
pos = nx.get_node_attributes(G, 'pos')

# find node near center (0.5,0.5)
ncenter, _ = min(pos.items(), key = lambda (node, (x, y)): (x-0.5)**2+(y-0.5)**2)

# color by path length from node near center
p = {node:length
     for node, length in nx.single_source_shortest_path_length(G, ncenter).items()
     if length < 5}

plt.figure(figsize = (8, 8))
node_color = p.values()
H = G.subgraph(p.keys())    
nx.draw_networkx_edges(H, pos, alpha = 0.4)
nx.draw_networkx_nodes(H, pos, node_size = 80, node_color = node_color,
                       cmap = plt.get_cmap('Reds_r'))

plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
plt.axis('off')
plt.savefig('random_geometric_graph.png')
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述